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ABSTRACT

Globally Convergent Methods for Solving Coefficient Inverse Problems for Time Dependent Maxwell Equations

Report Title



       This is an interdisciplinary project. The main results of the project are:

1.The analytical proof of the global convergence property using a sophisticated mathematical apparatus.

2.The development of a sophisticated analytical apparatus for establishing the relaxation property of the adaptivity technique.

3.Numerical implementations of resulting algorithms.

4.Numerical verifications of resulting algorithms on computationally simulated data.

5.Assembling an experimental apparatus in Microwave Laboratory of University of North Carolina at Charlotte.

6.Verification of the globally convergent numerical method on backscattering experimental data for targets standing in air. Targets mimic 
explosives.

7.Verification of the globally convergent numerical method on backscattering experimental data for targets buried in the ground. This case is 
much more complicated than the case of targets in air.

8.An experimental and numerical reconstruction evidence of the super resolution phenomenon.

9.Addressing a need of the Army via successful work with experimental data collected by the Forward Looking Radar of US Army Research 
Laboratory (ARL). The globally convergent method of this project was used.

10.Transfer of a ready-to-use software to ARL resulting from item #9. This software works with the real data of the Forward Looking Radar 
of ARL.

11.The use of experimental data of item #9 for a comparison of performances of the globally convergent numerical method of this project 
and the classical Krein equation method. It was established that while the first method works well, the second one fails for these data.

12.Four (4) presentations to Mr. Brian Burns, Drs. Anders Sullivan and Lam Nguyen, ARL engineers, and to Dr. Joseph D. Myers, the 
Program Manager of the Numerical Analysis Program of ARO.

13.Three joint publications with ARL engineers Drs. Anders Sullivan and Lam Nguyen.

14.A new globally convergent numerical method based on the Carleman Weight Function.

15.The first solution of a long standing problem about uniqueness of a phaseless 3-d inverse problem of quantum scattering. This was an 
open question since the publication in 1977 of the well known book of K. Chadan and P. Sabatier "Inverse Problems in Quantum Scattering 
Theory", Springer, New York.

16.Publication of a book summarizing some results of the project up to 2012. This book was published by Springer, the World most 
prestigious publisher of the scientific literature.

17.Publication of twenty two papers. Two of them are survey papers.

The target application of this project is in the standoff detection and identification of explosives, such as IEDs and antipersonnel land mines, 
using electric signals propagations. The numerical methods developed in this project use experimental data to image both dielectric constants 
and shapes of small inclusions buried in a sand box. Inclusions mimic explosives. A systematic study of twenty five cases was performed.
    
Conventional least squares cost functionals for solving Coefficient Inverse Problems (CIPs) face the fundamental obstacle: the phenomenon 
of multiple local minima and ravines. This results, in turn in the local convergence of conventional numerical methods for CIPs. Therefore, 
the following question is both the most crucial and the most challenging one in a numerical treatment of any CIP: How to rigorously obtain a 
good approximation for the unknown coefficient without any advanced knowledge of a small neighborhood of the solution? A numerical 
method providing such an approximation is called globally convergent. As soon as this approximation is found, some conventional locally 
convergent numerical methods can be used as refinement tools.

This project has been focused on the development of a globally convergent numerical method for a hyperbolic CIP. The crucial advantage of 
this method is that it does not need a good first guess for the solution, unlike all existing ones. Both analytical and numerical issues were 
addressed. It was observed that the best is a two-stage numerical procedure: On the first stage the globally convergent numerical method 
delivers a good approximation for the solution. And on the second stage the adaptivity technique refines the solution obtained on the first 
stage.
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Scientific Progress

The main accomplishments of this project are:   

    

1.The analytical proof of the global convergence property using a sophisticated mathematical apparatus.

2.The development of a sophisticated analytical apparatus for establishing the relaxation property of the adaptivity technique.

3.Numerical implementations of resulting algorithms.

4.Numerical verifications of resulting algorithms on computationally simulated data.

5.Assembling an experimental apparatus in Microwave Laboratory of University of North Carolina at Charlotte.

6.Verification of the globally convergent numerical method on backscattering experimental data for targets standing in air. 
Targets mimic explosives.

7.Verification of the globally convergent numerical method on backscattering experimental data for targets buried in the ground. 
This case is much more complicated than the case of targets in air.

8.An experimental and numerical reconstruction evidence of the super resolution phenomenon.

9.Addressing a need of the Army via successful work with experimental data collected by the Forward Looking Radar of US 
Army Research Laboratory (ARL). The globally convergent method of this project was used.

10.Transfer of a ready-to-use software to ARL resulting from item #9. This software works with the real data of the Forward 
Looking Radar of ARL.

11.The use of experimental data of item #9 for a comparison of performances of the globally convergent numerical method of 
this project and the classical Krein equation method. It was established that while the first method works well, the second one 
fails for these data.

12.Four (4) presentations to Mr. Brian Burns, Drs. Anders Sullivan and Lam Nguyen, ARL engineers, and to Dr. Joseph D. 
Myers, the Program Manager of the Numerical Analysis Program of ARO.

13.Three joint publications with ARL engineers Drs. Anders Sullivan and Lam Nguyen.

14.A new globally convergent numerical method based on the Carleman Weight Function.

15.The first solution of a long standing problem about uniqueness of a phaseless 3-d inverse problem of quantum scattering. 
This was an open question since the publication of the well known book of K. Chadan and P. Sabatier "Inverse Problems in 
Quantum Scattering Theory", Springer, New York, 1977.

16.Publication of a book summarizing some results of the project up to 2012. This book was published by Springer, the World 
most prestigious publisher of the scientific literature.

17.Publication of two survey papers.



Technology Transfer

1.Addressing a need of the Army via successful work with experimental data collected by the Forward Looking Radar of US 
Army Research Laboratory (ARL). The globally convergent method of this project was used.

2.Transfer of a ready-to-use software to ARL resulting from item #1. This software works with the real data of the Forward 
Looking Radar of ARL.

3.The use of experimental data of item #1 for a comparison of performances of the globally convergent numerical method of this 
project and the classical Krein equation method. It was established that while the first method works well, the second one fails 
for these data.

4.Four presentations of results were given to Mr. Brian Burns, Drs. Anders Sullivan and Lam Nguyen, ARL engineers, and to 
Dr. Joseph D. Myers, the Program Manager of the Numerical Analysis Program of ARO.

5.Three joint publications with ARL engineers Drs. Anders Sullivan and Lam Nguyen.

Three joint publications with ARL engineers mentioned in item #5 are:

1. A.V. Kuzhuget, L. Beilina, M.V. Klibanov, A. Sullivan, L. Nguyen and M.A. Fiddy, Blind experimental data collected in the field 
and an approximately globally convergent inverse algorithm, Inverse Problems, 28, 095007, 2012.

2. A.V. Kuzhuget, L. Beilina, M.V. Klibanov, A. Sullivan, L. Nguyen and M.A. Fiddy, Quantitative image recovery from measured 
blind backscattered data using a globally convergent inverse method, IEEE Transactions of Geoscience and Remote Sensing, 
51, 2937-2948, 2013.

3. A.L. Karchevskii, M.V. Klibanov, N. Pantong, A. Sullivan and L. Nguyen, The Krein method and the globally convergent 
method for experimental data, Applied Numerical Mathematics, 74, 111-127, 2013.
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Abstract

This is an interdisciplinary project. The main results of the project are:

1. The analytical proof of the global convergence property using a sophisticated mathe-
matical apparatus.

2. The development of a sophisticated analytical apparatus for establishing the relaxation
property of the adaptivity technique.

3. Numerical implementations of resulting algorithms.

4. Numerical verifications of resulting algorithms on computationally simulated data.

5. Assembling an experimental apparatus in Microwave Laboratory of University of North
Carolina at Charlotte.

6. Verification of the globally convergent numerical method on backscattering experimen-
tal data for targets standing in air. Targets mimic explosives.

7. Verification of the globally convergent numerical method on backscattering experimen-
tal data for targets buried in the ground. This case is much more complicated than
the case of targets in air.

8. An experimental and numerical reconstruction evidence of the super resolution phe-
nomenon.

9. Addressing a need of the Army via successful work with experimental data collected
by the Forward Looking Radar of US Army Research Laboratory (ARL). The globally
convergent method of this project was used.

10. Transfer of a ready-to-use software to ARL resulting from item #9. This software
works with the real data of the Forward Looking Radar of ARL.

11. The use of experimental data of item #9 for a comparison of performances of the
globally convergent numerical method of this project and the classical Krein equation
method. It was established that while the first method works well, the second one fails
for these data.
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12. Four (4) presentations to Mr. Brian Burns, Drs. Anders Sullivan and Lam Nguyen,
ARL engineers, and to Dr. Joseph D. Myers, the Program Manager of the Numerical
Analysis Program of ARO.

13. Three joint publications with ARL engineers Drs. Anders Sullivan and Lam Nguyen.

14. A new globally convergent numerical method based on the Carleman Weight Function.

15. The first solution of a long standing problem about uniqueness of a phaseless 3-d inverse
problem of quantum scattering. This was an open question since the publication in
1977 of the well known book of K. Chadan and P. Sabatier ”Inverse Problems in
Quantum Scattering Theory”, Springer, New York.

16. Publication of a book summarizing some results of the project. This book was pub-
lished by Springer, the World most prestigious publisher of the scientific literature.

17. Publication of twenty two papers. Two of them are survey papers.

The target application of this project is in the standoff detection and identification of
explosives, such as IEDs and antipersonnel land mines, using electric signals propagations.
The numerical methods developed in this project use experimental data to image both di-
electric constants and shapes of small inclusions buried in a sand box. Inclusions mimic
explosives. A systematic study of twenty five cases was performed.

Conventional least squares cost functionals for solving Coefficient Inverse Problems (CIPs)
face the fundamental obstacle: the phenomenon of multiple local minima and ravines. This
results, in turn in the local convergence of conventional numerical methods for CIPs. There-
fore, the following question is both the most crucial and the most challenging one in a
numerical treatment of any CIP: How to rigorously obtain a good approximation for the un-
known coefficient without any advanced knowledge of a small neighborhood of the solution?
A numerical method providing such an approximation is called globally convergent. As soon
as this approximation is found, some conventional locally convergent numerical methods can
be used as refinement tools.

This project has been focused on the development of a globally convergent numerical
method for a hyperbolic CIP. The crucial advantage of this method is that it does not need
a good first guess for the solution, unlike all existing ones. Both analytical and numerical
issues were addressed. It was observed that the best is a two-stage numerical procedure: On
the first stage the globally convergent numerical method delivers a good approximation for
the solution. And on the second stage the adaptivity technique refines the solution obtained
on the first stage.
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1 Introduction

This is an interdisciplinary project. It combines analytical studies, studies of computationally
simulated data and studies of experimental data.

The target application of this project is detection of explosives, such as IEDs, plastic
antipersonnel land mines, etc. using electric signals propagations. Indeed, it is well known
from tables of dielectric constants [65, 66] that dielectric constants in explosives are higher
than those of regular materials. Hence, the idea is to image both dielectric constants and
shapes of small sharp inclusions embedded in an otherwise slowly changing background.

Different imaging methods have been applied to this type of measurements to obtain
geometrical information such as shapes, sizes and locations of the targets, see, e.g. [47].
However, the dielectric constants, which characterize the targets in terms of their constituent
materials, are much more difficult to estimate. Unlike this, the globally convergent numerical
method of the current project can image both dielectric constants and shapes of inclusions
mimicking explosives. The crucial advantage of this method is that it does not need a good
first guess for the solution, unlike all existing ones.

A Coefficient Inverse Problem (CIP) for a Partial Differential Equation (PDE) is a prob-
lem of the reconstruction of an unknown coefficient of that PDE from the boundary measure-
ments. Because of many dangers on the battlefield, the Army is interested in the minimal
number of measurements. Thus, only CIPs with a single measurement event are considered
in this project. In other words, either a single location of the point source or a single direc-
tion of the initializing plane wave is considered. It was observed that the best is a two-stage
numerical procedure:

Stage 1. The globally convergent method provides a good approximation for the solution
without any a priori knowledge of a small neighborhood of this solution.

Stage 2. The locally convergent Adaptive Finite Element Method (adaptivity)
The first stage gives us accurate values of dielectric constants. The second stage provides

accurate images of shapes of targets. It is important that the adaptivity uses the solution of
the first stage as its starting point.

2 The List of Main Results Of This Project

The first paper about the globally convergent method of this paper was published in 2008
[25]. Since then the authors of [25] have developed this method much further, see items #1-6
in Introduction. Our group has pioneered all main results listed below. The main results of
this project are:

1. The analytical proof of the global convergence property using a sophisticated mathe-
matical apparatus [1, 16, 5].

2. The development of a sophisticated analytical apparatus for establishing the relaxation
property of the adaptivity technique [1, 7].
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3. Numerical implementations of resulting algorithms.

4. Numerical verifications of resulting algorithms on computationally simulated data [1,
16].

5. Assembling an experimental apparatus in Microwave Laboratory of University of North
Carolina at Charlotte.

6. Verification of the globally convergent numerical method on backscattering experimen-
tal data for targets standing in air [2, 3, 4, 6]. Targets mimic explosives.

7. Verification of the globally convergent numerical method on backscattering experimen-
tal data for targets buried in the ground [5]. This case is much more complicated than
the case of targets in air.

8. An experimental and numerical reconstruction evidence of the super resolution phe-
nomenon [5].

9. Addressing a need of the Army via successful work with experimental data collected
by the Forward Looking Radar of US Army Research Laboratory (ARL) [17, 18, 19].
The globally convergent method of this project was used.

10. Transfer of a ready-to-use software to ARL resulting from item #9. This software
works with the real data of the Forward Looking Radar of ARL [59].

11. The use of experimental data of item #9 for a comparison of performances of the
globally convergent numerical method of this project and the classical Krein equation
method [19]. It was established that while the first method works well, the second one
fails for these data.

12. Four (4) presentations to Mr. Brian Burns, Drs. Anders Sullivan and Lam Nguyen,
ARL engineers, and to Dr. Joseph D. Myers, the Program Manager of the Numerical
Analysis Program of ARO.

13. Three joint publications with ARL engineers Drs. Anders Sullivan and Lam Nguyen
[17, 18, 19].

14. A new globally convergent numerical method based on the Carleman Weight Function
[11].

15. The first solution of a long standing problem about uniqueness of a phaseless 3-d
inverse problem of quantum scattering [8, 9, 10]. This was an open question since the
publication of the well known book [38] in 1977.

16. Publication of a book summarizing some results of the project [1]. This book was
published by Springer, the World most prestigious publisher of the scientific literature.

17. Publication of two survey papers [7, 13].
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3 The Theory of The Globally Convergent Numerical

Method

3.1 Statement of the CIP

As the forward problem, we consider the following Cauchy problem

εr(x)utt = ∆u in R3 × (0,∞) , (1)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)

Here εr(x) is the spatially distributed variable dielectric constant. It is well known that
equation (1) can be derived from Maxwell’s equations only in the 2-d case. Also, even
though it cannot be derived in the 3-d case for εr(x) 6= const., it was successfully used
to model electric waves propagation in our works with experimental data in [1, 2, 3, 4, 5].
The reason of the success with this equation, instead of the Maxwell’s system, for real data
was explained numerically in [29]. Namely, it was shown in [29] that if the incident electric
field has the form Einc = (0, E2, 0) , then the component E2 (x, t) dominates components
E1 (x, t) , E3 (x, t) and the propagation of E2 (x, t) is well governed by equation (1).

Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C3. We assume that
the coefficient εr (x) of equation (1) is such that

εr (x) ∈ [1, d] , εr (x) = 1 for x ∈ R3�Ω, (3)

εr (x) ∈ C2
(
R3
)
, (4)

where d = const. > 1 characterized the upper bound of the function εr (x) . Since we do not

impose any smallness conditions on the number d̃ = d − 1, then our results are not “local”
ones.

Coefficient Inverse Problem 3.1 (CIP3.1). Suppose that the coefficient εr (x) satis-
fies (3), (4). Assume that the function εr (x) is unknown in the domain Ω. Determine the
function εr (x) for x ∈ Ω, assuming that the following function g (x, t) is known for a single
source position x0 /∈ Ω

u (x, t) |∂Ω×(0,∞)= g (x, t) . (5)

The assumption εr (x) = 1 for x ∈ R3�Ω means that one has air outside of the medium
of interest Ω. The inequality εr (x) ≥ 1 is because the speed of EM waves propagation
in the medium is less than one in the air. The function g (x, t) models time dependent
measurements of the wave field at the boundary of the domain of interest. The assumption
that the function g (x, t) is known on the infinite time interval t ∈ (0,∞) rather than on a
finite one, is not a serious restriction from the computational point of view. Indeed, we work
with the Laplace transform (6) and the kernel e−st of the integral (6) decays very rapidly.
Therefore, in fact only values of the function g (x, t) for t ∈ (0, a) with a small number
a are used in our method. Besides, our data pre-processing procedure for experimental
data [1, 2, 3, 4, 5] shows that we can work with only a small piece of the time dependent
experimental curves.
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3.2 Integral differential equation

Below Ck+α denote Hölder spaces, where k ≥ 0 is an integer and α ∈ (0, 1) . Consider the
Laplace transform of the functions u,

w(x, s) =

∞∫

0

u(x, t)e−stdt, for s ≥ s = const. > 0, (6)

where s is a sufficiently large number. In our numerical studies we choose s numerically.
Then (1), (2) and Theorem 2.7.1 of [1] imply that

∆w − s2εr (x)w = −δ (x− x0) , x ∈ R3, ∀s ≥ s, (7)

lim
|x|→∞

w(x, s) = 0, ∀s ≥ s. (8)

Theorem 3.1 is a reformulation of Theorem 2.7.2 of the book [1]. A similar theorem for the
case when the point source in (2) is replaced with an incident plane wave was proven in [5].

Theorem 3.1. Let the source x0 /∈ Ω and the function εr (x) satisfies conditions (3) and
also εr ∈ Cα (R3) . Let w1 (x, s) and wd (x, s) be solutions of the problem (7), (8) for εr ≡ 1
and εr ≡ d respectively,

w1 (x, s) =
exp (−s |x− x0|)

4π |x− x0|
, wd (x, s) =

exp
(
−s

√
d |x− x0|

)

4π |x− x0|
.

Then for any s > 0 there exists unique solution w (x, s) of the problem (7), (8), which is
represented in the form

w (x, s) = w1 (x, s) + w (x, s) , w ∈ C2+α
(
R3
)
. (9)

Furthermore,
wd (x, s) < w (x, s) ≤ w1 (x, s) , ∀x 6= x0. (10)

Also, the Laplace transform (6) w(x, s) of the function u (x, t) satisfies (9), (10) for suffi-
ciently large s and s ≥ s.

Thus, below we consider only those solutions of the problem (7), (8), which satisfy con-
ditions (8), (10). Since by (10) w > 0, then we can consider the function v = lnw/s2. Hence,
recalling that x0 /∈ Ω, we obtain that (7) leads to

∆v + s2 |∇v|2 = εr (x) , x ∈ Ω, (11)

v|∂Ω = ϕ (x, s) , s ∈ [s, s] , (12)

where the function ϕ (x, s) is generated by the function g(x, t) in (5). Introduce a new
function q (x, s) = ∂sv (x, s) . Then under certain non-restrictive conditions

Dα
x (v) = O

(
1

s

)
, Dα

x (q) = O

(
1

s2

)
, s→ ∞; |α| ≤ 2, (13)

v (x, s) = −
∞∫

s

q (x, τ) dτ. (14)
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We represent the integral (14) as

v (x, s) = −
s∫

s

q (x, τ ) dτ + V (x, s) , (15)

where s > s is a large parameter which should be chosen in numerical experiments. Actually,
s is one of regularization parameters of our method. We call V (x, s) the tail function,

V (x, s) = −
∞∫

s

q (x, τ ) dτ .

By (15)

V (x, s) =
lnw (x, s)

s2
, x ∈ Ω. (16)

By (13)
∥∥Dk

sV (x, s)
∥∥
C2(Ω) = O

(
1

sk+1

)
, k = 0, 1; s→ ∞. (17)

We obtain from (11)-(17) the following nonlinear integral differential equation

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ



2

+ 2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )2 = 0.

(18)

Let ψ (x, s) = ∂sϕ (x, s) . Then (12) implies that

q|∂Ω = ψ (x, s) , s ∈ [s, s] . (19)

Hence, we need to solve the problem (18), (19). Here the truncation parameter s is
the regularization parameter of our numerical method. The presence of integrals in (18)
implies the nonlinearity, which is the main difficulty here. If both functions q and V are
approximated well together with their x−derivatives up to the second order, then the target
unknown coefficient εr (x) can also be approximated well via (11), where the function v is
computed via (15). Equation (18) contains two unknown functions q and V . The reason why
we can approximate both of them is that we treat them differently: while we approximate
the function q via outer iterations, the function V is approximated via inner iterations. Thus,
below we focus on the following question: How to solve the problem (18), (19) numerically?
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3.3 Layer stripping with respect to s

We approximate the function q (x, s) as a piecewise constant function with respect to the
pseudo frequency s. That is, we assume consider a partition of the interval [s, s] with the
sufficiently small grid step size h,

s = sN < sN−1 < ... < s1 < s0 = s, h = si−1 − si.

We assume that q (x, s) = qn (x) for s ∈ (sn, sn−1] . The boundary condition (19) is approxi-
mated as

qn|∂Ω = ψn(x). (20)

where ψn is the average of the function ψ over the interval (sn, sn−1) . Rewrite (18) for
s ∈ (sn, sn−1] using this piecewise constant approximation. Then multiply the resulting
approximate equation by the s-dependent Carleman Weight Function (CWF) of the form

Cn,µ (s) = exp [−µ |s− sn−1|] , s ∈ (sn, sn−1] , (21)

and integrate with respect to s ∈ (sn, sn−1] . Here µ >> 1 is a large parameter of ones
choice. Usually we choose µ = 50. We obtain the following approximate equation in Ω for
the function qn (x) , n = 1, ..., N

Ln (qn) := ∆qn − A1n

(
h

n−1∑

j=0

∇qj −∇Vn
)
∇qn = (22)

= Bn (∇qn)2 −A2,nh
2

(
n−1∑

j=0

∇qj
)2

+ 2A2,n∇Vn
(
h

n−1∑

j=0

∇qj
)

− A2,n (∇Vn)2 .

We have intentionally inserted dependence of the tail function Vn from the iteration number
n here because we will approximate these functions iteratively. In (22) A1,n = A1,n (µ, h) ,
A2,n = A2,n (µ, h) and Bn = Bn (µ, h) are certain numbers depending on µ and h, see specific
formulas in (22). It is convenient to set in (22)

q0 ≡ 0.

Since boundary value problems (20), (22) are actually generated by equation (18), which
contains Volterra-like s-integrals, then these problems can be solved sequentially starting
from q1. As to (22), an important point is that |Bn (µ, h)| ≤ 8s2/µ for µh ≥ 1 (22). We have
used µ = 50 in our computations. Hence, assuming that µ >> 1, we ignore the nonlinear
term in (22) via setting

Bn (∇qn)2 := 0. (23)

This allows us to solve a linear problem for each qn.
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3.4 The algorithm

On each iterative step n we approximate both the function qn and the tail function Vn, see
Remark 5.1. Each iterative step requires an approximate solution of the boundary value
problem (20), (22). First, we choose an initial tail function V1,1 (x) ∈ C2

(
Ω
)
. The first

choice V1,1 for the tail function is described in subsection 3.6. For each qn we have inner
iterations to update tails. On these iterations we compute functions qn,k, k = 1, ..., m. Here
the number of inner iterations m is chosen in numerical experiments. The criterion for the
choice is the stabilization of iteratively computed tail functions Vn,k at the iteration k := m.

Step nk, where n, k ≥ 1. Recall that q0 ≡ 0. Suppose that functions qj ∈ C2
(
Ω
)
, j =

1, ..., n − 1 and tails V1, ..., Vn−1, Vn,k ∈ C2
(
Ω
)
are constructed. To construct the function

qn,k, we use the FEM to solve the following Dirichlet boundary value problem for the elliptic
equation in Ω

∆qn,k − A1n

(
h

n−1∑

j=0

∇qj −∇Vn,k
)
∇qn,k =

−A2,nh
2

(
n−1∑

j=0

∇qj
)2

+ 2A2,n∇Vn,k ·
(
h

n−1∑

j=0

∇qj
)

− A2,n (∇Vn,k)2 , (24)

qn,k|∂Ω = ψn(x).

To reconstruct an approximation ε
(n,k)
r (x) for the function εr (x) , we first use the following

discrete analog of (15)

vn,k (x, sn) = −hqn,k (x)− h

n−1∑

j=1

qj (x) + Vn,k (x) . (25)

Next, let Ω′ ⊂ Ω be a subdomain of Ω such that

Ω′ ⊂ Ω, ∂Ω′ ∩ ∂Ω = ∅. (26)

Consider a function χ (x) ,

χ ∈ C3
(
R3
)
, χ (x) =





1 in Ω′,
between 0 and 1 in Ω�Ω′,

0 in R3�Ω.
(27)

For any function a ∈ Cα
(
Ω
)
define

â (x) = (1− χ (x)) + χ (x) a (x) , x ∈ R3. (28)

Hence,

â (x) =





1, x ∈ R3�Ω,
a (x) in Ω′,

≥ 1 in Ω, if a (x) ≥ 1 in Ω.
(29)

11



Next, using (11), (25), (28) and (29), we set

fn,k (x) : = ∆vn,k (x, sn) + s2n |∇vn,k (x, sn)|2 , n ≥ 1, x ∈ Ω, (30)

ε(n,k)r (x) : = f̂n,k (x) . (31)

Next, we solve the forward problem (7), (8) with εr (x) := ε̂(n,k)r (x) , s := s and obtain the
function wn,k (x, s) satisfying conditions (9), (10) (Theorem .1). Next, using (16), we set for
the new tail

Vn,k+1 (x) =
lnwn,k (x, s)

s2
, x ∈ Ω.

We continue these iterations with respect to tails for k = 1, ..., m.Next, we set

ε(n)r (x) := ε(n,m)
r (x) , qn (x) := qn,m (x) , Vn (x) := Vn,m (x) := Vn+1,1 (x) for x ∈ Ω.

We stop iterations with respect to n at n := N ∈ [1, N ] , where N is a certain number
at which convergence occurs. Stopping criteria are discussed in detail in our publications
[1, 16, 2, 3, 4, 5]and they go along well with one of backbone ideas of the theory of ill-posed
problems. By this idea, the iteration number can be chosen as a regularization parameter,
see pages 156 and 157 of the book [40]. Furthermore, we have constantly observed that
results of our numerical studies go along well with convergence criteria.

3.5 Estimates of tail functions

The most difficult question on the way of proving our advanced convergence theorem was the
question about estimating gradients of tail functions in Hölder norms C1+α. This was done
in Theorem 2.9.1.2 of the book [1] as well as in Theorem 4.2 of [16]. We now reformulate
these theorems.

Let Ω1 ⊂ R3 be a finite domain with ∂Ω1 ∈ C3 and such that Ω ⊂ Ω1, ∂Ω∩∂Ω1 = ∅. Let
d > 1 be the number from (3) and d > d be another number. Introduce the set of functions
P
(
d, d
)
as

P
(
d, d
)
=
{
εr (x) ∈ Cα

(
Ω
)
: ‖εr‖Cα(Ω) ≤ d+ 1, 1 ≤ εr (x) ≤ d+ 1, ∀x ∈ Ω

}
.

For each function εr ∈ P
(
d, d
)
we construct the function εr (x) by the formula (28), where

the function χ (x) is defined in (27). Let wε̂r (x, s) be the solution of the problem (7)-(10)
with εr := ε̂r, s := s. Using (16), define

Vε̂r (x, s) =
lnwε̂r (x, s)

s2
. (32)

Following again one of the main concepts of the theory of Ill-Posed Problems [1], we assume
in Theorem 3.2 the existence of the exact solution ε∗r (x) for the unperturbed exact data
g∗ (x, t) in (3).
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Theorem 3.2. Let the parameter s > 1 and x0 /∈ Ω1. Let ε
∗
r (x) ∈ P

(
d, d
)
be the

exact solution of CIP3.1 with the noiseless data g∗ (x, t) in (3) and Vε∗r (x, s) be the exact
tail defined by the formula (32). Then there exists a constant B = B (Ω,Ω1, χ, x0, s, x0) > 2
depending only on listed parameters such that the following estimates hold

∥∥∇Vε∗r
∥∥
C1+α(Ω) ≤ B, ‖∇Vε̂r‖C1+α(Ω) ≤ B, ∀εr ∈ P

(
d, d
)
,

∥∥∇Vε̂r −∇Vε∗r
∥∥
C1+α(Ω) ≤ B ‖εr − ε∗r‖Cα(Ω) , ∀εr ∈ P

(
d, d
)
.

3.6 The first tail

In the description of the algorithm in subsection 3.4 we have left open the question about
the choice of the first tail function V1,1. This question is addressed in this subsection. By
(16) the asymptotic behavior of the exact tail is

Vε∗r (x, s) =
p∗ (x)

s
+O

(
1

s2

)
, s→ ∞, x ∈ Ω.

for a certain function p∗ (x) .We truncate the second term of this asymptotic behavior. Thus,
our Approximate Mathematical Model consists of the following assumption.

Assumption. There exists a function p∗ (x) ∈ C2+α
(
Ω
)
such that the exact tail function

V ∗ (x, s) has the form

Vε∗r (x, s) :=
p∗ (x)

s
, ∀s ≥ s. (33)

Furthermore, by (32) we assume that

p∗ (x)

s
=

lnw∗ (x, s)

s2
, ∀s ≥ s. (34)

Since q∗ (x, s) = ∂sVε∗r (x, s) for s ≥ s, we derive from (33) that

q∗ (x, s) = −p
∗ (x)

s2
. (35)

Substituting (33) and (35) in the equation (18) and boundary data (19) for the function
q∗ (x, s) an setting there s := s, we obtain the following approximate Dirichlet boundary
value problem for the function p∗ (x)

∆p∗ = 0 in Ω, p∗ ∈ C2+α
(
Ω
)
, (36)

p∗|∂Ω = −s2ψ∗ (x, s) , (37)

where ψ∗ (x, s) is the exact function ψ (x, s) , which corresponds to the function g∗ (x, t) . The
approximate equation (36) is valid only within the framework of Assumption. Although this
equation is linear, formula (11) for the reconstruction of the target coefficient is nonlinear.
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Recall that by (19) q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] . Assume that

ψ (x, s) ∈ C2+α
(
Ω
)
, ∀s ∈ [s, s] . (38)

Consider the solution p (x) of the following boundary value problem

∆p = 0 in Ω, p ∈ C2+α
(
Ω
)
, (39)

p|∂Ω = −s2ψ (x, s) . (40)

Given (38), the Schauder theorem implies that there exists unique solution p of the problem
(39), (40).

As the first guess for the tail function we take

V1,1 (x) :=
p (x)

s
. (41)

It follows from (33)-(41) that

∥∥V1,1 − Vε∗r
∥∥
C2+α(Ω) ≤M ‖ψ (x, s)− ψ∗ (x, s)‖C2+α(∂Ω) , (42)

where M =M (Ω) = const. > 0.
Remarks:
1. We point out that the truncation of the asymptotic series with respect to 1/s is done

in Assumption only on the first iteration, i.e. only for the first tail. No assumptions are
imposed on follow up iterations.

2. An interesting conclusion which follows immediately from (42) is that we obtain a
good approximation for the solution of our CIP already from the first tail. In other words,
a good approximation is obtained already on the first iteration of our method. And we
have constantly observed this computationally. The error of this approximation depends
only on the error in the boundary data. It follows from here and from (11), (15) that we
obtain a good approximation for the target coefficient already from the first tail. Theorem
3.3 guarantees that all other solutions obtained in the above iterative process also provide
good approximations, as long as the number of iterations is not too large. This means
that we should develop numerically a stopping criterion to stop iterations. Suppose now
that iterations are stopped before this stopping criterion is met. In particular, they can be
stopped just on the first iteration. In this case we can apply the second stage of our two-stage
numerical procedure [1]. Namely, we could apply a locally convergent adaptivity technique
to refine solution. We would take the solution obtained on the globally convergent stage as
the starting point of iterations.

3.7 Global convergence theorem

The proof of Theorem 3.3 was first published in our book [1]: see Theorem 2.9.4 there. Next,
it was published in [16]. Theorem 3.3 was extended in [5] to the case when the point source
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is replaced by an incident plane wave. The proof of Theorem 3.3 essentially uses Theorem
3.2 and Assumption.

Let ψn(x), x ∈ ∂Ω be the boundary data (20) for the functions qn (x) generated by
the data function ψ(x), x ∈ ∂Ω in (19). Let ψ∗(x), x ∈ ∂Ω be the function ψ(x) which
corresponds to the exact solution ε∗r (x) , x ∈ Ω of CIP3.1, which was introduced in Theorem
3.2. Let ψ

∗

n(x), x ∈ ∂Ω be corresponding exact functions ψn(x). Let the small number
σ ∈ (0, 1) represents the level of the error in the data ψ(x). Then it is natural to assume
that ∥∥∥ψn − ψ

∗

n

∥∥∥
C2+α(∂Ω)

≤ C∗ (h+ σ) , C∗ = const. ≥ 1. (43)

Theorem 3.3. Let Assumption be valid. Consider the algorithm of subsection 3.4. Let
the parameter s > 1 and x0 /∈ Ω1. Let ε

∗
r (x) ∈ P

(
d, d
)
be the exact solution of CIP3.1 with

the noiseless data g∗ (x, t) in (3) and Vε̂∗r (x, s) be the exact tail defined by the formula (32).
Assume that (43) holds. Introduce the error parameter η,

η = 2 (h+ σ) .

Assume that the parameter µ in the Carleman Weight Function (21) is so large that

µ ≥ 8 (sC∗)2

η
.

Also, assume that in that algorithm all functions ε
(n,k)
r (x) ≥ 1, x ∈ Ω. Then there exists a

constant B = B (Ω,Ω1, χ, x0, s, x0) > 2 depending only on listed parameters such that if the
parameter η is so small that

η ∈ (0, η0) where η0 =
1

B3Nm
, (44)

then the following estimate holds with a number ω = ω (B,N,m) ∈ (0, 1) depending only on
listed parameters ∥∥ε(n,k)r − ε∗r

∥∥
Cα(Ω) ≤ ηω, ∀η ∈ (0, η0) .

In other words, the algorithm of subsection 3.4 is globally convergent.
In particular, (44) requires that the error parameter η and the total number of iterations

Nm should be connected with each other. We again refer to pages 156 and 157 of the
classical book about the theory of Ill-Posed Problems [40]. It follows from there that such
connection should be in place even for simpler ill-posed problems.

4 The Theory Of the Image Refinement via Adaptive

Finite Element Method (Adaptivity)

As it was pointed out in Introduction, we have constantly observed that the best approach
is to apply a two-stage numerical procedure. On the first stage the globally convergent
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numerical method delivers a function which is sufficiently close to the exact coefficient. In
fact, the first stage provides accurate locations and accurate values of refractive indices
n (x) =

√
εr (x) of targets mimicking explosives. On the second stage the locally convergent

method, the adaptivity, is applied to refine images. The adaptivity uses the solution of the
first stage as its starting point. The adaptivity provides accurate shapes of those targets.
Therefore, the two-stage procedure provides all three components of interest of targets:

1. Refractive indices.

2. Locations.

3. Shapes.

The classical Tikhonov functional for solving ill-posed problems, including CIPs is known
for a long time, see, e.g. the books [1, 40]. However, what makes the adaptivity attractive
is that it minimizes this functional on a sequence of locally refined meshes of finite elements
rather than on a single mesh. Although the adaptivity for ill-posed problems has been known
since 2001, see, e.g. [30]-[35], a rigorous proof of the key fact that mesh refinements indeed
provide a better accuracy was absent. We call the latter property relaxation. The major
obstacle for the proof of the relaxation property is the ill-posed nature of inverse problems.
The first rigorous proof of this fact was obtained in 2010 [28]. Next, this result was refined
in the book [1]. A survey was published in [7].

In this section we present our results about the relaxation of the adaptivity. We point
out that it was natural to prove first the relaxation property for an abstract operator F .
However, it is well known in the theory of ill-posed problems that it is usually not easy
to transform this result to the case of our specific CIP 3.1. Nevertheless, this was done in
[1, 7, 28].

4.1 The space of finite elements

As the first step for establishing the relaxation property of the adaptivity, we introduce the
space of finite elements. It is worthy to point out that the group led by the PI was the first
one who has introduced this space in 2010 [28].

Let Ω ⊂ Rn, n = 2, 3 be a bounded domain. Consider a discretization of Ω by an
unstructured mesh T using non-overlapping elements K. For R2 the elements K are triangles
or quadrilaterals and for R3 tetrahedrons or hexahedrons such that T = K1, ..., Kl, where l
is the number of elements in Ω, and

D = ∪K∈TK = K1 ∪K2... ∪Kl.

We obtain a polygonal domain D and assume for brevity that D = Ω.
Following section 76.4 of the book [42], consider piecewise linear functions {ej (x, T )}Nj=1 ⊂

C
(
Ω
)
, which are called test functions. Functions {ej (x, T )}Nj=1 are linearly independent in
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Ω. Here, N is the total number of nodes in the mesh T . Let {Ni} be the set of nodal points
of triangle/tetrahedra K for all K ∈ T . Then

ej (Ni, T ) =

{
1, i = j,
0, i 6= j.

We introduce the finite element space Vh as

Vh =
{
v(x) ∈ H1(Ω) : v ∈ C(Ω), v|K ∈ P1(K) ∀K ∈ T

}
,

where P1(K) denotes the set of piecewise-linear functions on K. The finite dimensional finite
element space Vh is constructed such that Vh ⊂ V .

Let hK be the diameter of element K which we define as the longest side of K and r
be the radius of the maximal circle/sphere inscribed in K. We impose the shape regularity
assumption for all triangles/tetrahedra uniformly for all possible triangulations T which we
consider. Specifically, we assume that

a1 6 hK 6 ra2, a1, a2 = const. > 0, ∀K ∈ T, ∀ T, (45)

where numbers a1, a2 are independent on the triangulation T . Let hmax (T ) and hmin (T ) be
respectively the maximal and minimal diameters of triangles/tetrahedra of the triangulation
T . We assume everywhere below that

hmin (T )

hmax (T )
≤ cT , ∀T (46)

for a certain positive constant cT . Obviously, the number of all possible triangulations
satisfying (45), (46) is finite. Thus, we introduce the following finite dimensional linear
space H,

H =
⋃

T

Vh (T ) , ∀T satisfying (45), (46).

Hence,
dimH <∞, H ⊂

(
C
(
Ω
)
∩H1 (Ω)

)
, ∂xi

f ∈ L∞ (Ω) , ∀f ∈ H. (47)

In (47) ”⊂” means the inclusion of sets. We equip H with the same inner product as
the one in L2 (Ω) . Denote (, ) and ‖·‖ the inner product and the norm in H respectively,
‖f‖H := ‖f‖L2(Ω) := ‖f‖ , ∀f ∈ H. Everywhere in section 4 H is this space. We view the
space H as an “ideal” space of very fine finite elements, which cannot be reached in practical
computations. At the same time, all other spaces of finite elements we work with below are
subspaces of H. In particular, this means that we assume without further mentioning that
(45) and (46) are valid for all meshes considered below.

Keeping in mind the mesh refinement process in the adaptivity, we now explain how do
we construct triangulations {Tn} as well as corresponding subspaces {Mn} of the space H
which correspond to mesh refinements. Consider the first triangulation T1 with rather coarse
mesh. We set M1 := Vh (T1) ⊂ H. Suppose that the pair (Tn,Mn) is constructed after n
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mesh refinements and that the basis functions in the space Mn are {ej (x, Tn)}Nn

j=1 . We now
want to refine the mesh again. We define the pair (Tn+1,Mn+1) as follows. We refine the
mesh in the standard manner as it is usually done when working with triangular/tetrahedron
finite elements. When doing so, we keep (45). Hence, we obtain both the triangulation Tn+1

and the corresponding test functions {ej (x, Tn+1)}Nn+1

j=1 . It is well known that test functions

{ej (x, Tn)}Nn

j=1 are linearly dependent from new test functions {ej (x, Tn+1)}Nn+1

j=1 . Thus, we
define the subspace Mn+1 as

Mn+1 := Span
(
{ej (x, Tn+1)}Nn+1

j=1

)
.

Therefore, we have obtained a finite set of linear subspaces {Mn}Nn=1 of the space H. Each
subspace Mn corresponds to the mesh refinement number n,Mn+1�Mn 6= ∅ and

Mn ⊂Mn+1 ⊂ H, n ∈ [1, N − 1] .

Let I be the identity operator on H . For any subspace M ⊂ H, let PM : H → M be
the orthogonal projection operator of the space H onto its subspace M . Denote for brevity
Pn := PMn

. Let hn be the maximal grid step size of Tn. Hence, hn+1 6 hn. Let f
I
n be the

standard interpolant of the function f ∈ H on triangles/tetrahedra of Tn, see section 76.4 of
[42]. It can be easily derived from formula (76.3) of [42] that

∥∥f − f I
n

∥∥ ≤ K ‖∇f‖L∞(Ω) hn, ∀f ∈ H, (48)

where K = K (Ω, r, a1, a2) = const. > 0. Since f I
n ∈ H, ∀f ∈ H, then by one of well known

properties of orthogonal projection operators,

‖f − Pnf‖ 6
∥∥f − f I

n

∥∥ , ∀f ∈ H. (49)

Hence, (48) and (49) imply that with a different constant K = K (Ω, r, a1, a2) > 0

‖f − Pnf‖ 6 K ‖∇f‖L∞(Ω) hn, ∀f ∈ H. (50)

Since H is a finite dimensional space in which all norms are equivalent, it is convenient for
us to rewrite (50) with a different constant K = K (Ω, r, , a1, a2) > 0 as

‖x− Pnx‖ 6 K ‖x‖ hn, ∀x ∈ H. (51)

For any a > 0 and for any x ∈ H denote Va (x) = {z ∈ H : ‖x− z‖ < a} .

4.2 Relaxation

Let H2 be another Hilbert space. Let G ⊂ H be an open bounded set and F : G → H2 be
an operator which is continuos, has the Fréchet derivative F ′ (x) , ∀x ∈ G and the operator
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F ′ (x) is Lipschitz continous on the set G. For convenience, we assume below that F is
one-to-one. Consider the equation

F (x) = y, x ∈ G. (52)

As it is usually done in the regularization theory [1, 40], we assume that the right hand side
of equation (52) is given with a small error δ ∈ (0, 1). We also assume that there exists an
“ideal” exact solution x∗ of (52) with the “ideal” exact data y∗. Thus, we assume that

F (x∗) = y∗, x∗ ∈ G, ‖y − y∗‖2 ≤ δ. (53)

Let x0 ∈ H be a first guess for the exact solution x∗. Consider the Tikhonov functional
Jα (x) ,

Jα (x) =
1

2
‖F (x)− y‖22 +

α

2
‖x− x0‖2 , x ∈ G, x0 ∈ G, (54)

where α ∈ (0, 1) is the regularization parameter. We impose a rather conventional assump-
tion that

α = α (δ) = δ2µ, µ = const. ∈
(
0,

1

2

)
. (55)

A minimizer xα(δ) of this functional is called regularized solution. Since by (47) dimH <∞,
then the following lemma follows immediately from the Weierstrass theorem.

Lemma 4.1. Let F be the operator defined above in this section. Then there exists a
regularized solution xα(δ) ∈ G,

inf
G
Jα (x) = min

G
Jα (x) = Jα (xα) . (56)

Theorem 4.1 specifies the location of the minimizer xα(δ) of the functional (54).
Theorem 4.1. Let V1 (x

∗) ⊂ G. Let in (54) the first guess x0 for the exact solution x∗

be so accurate that

‖x0 − x∗‖ < δ3µ

3
. (57)

Then there exists a sufficiently small number δ0 = δ0 (N1, N2, µ) ∈ (0, 1) such that for every
δ ∈ (0, δ0) and for α = α (δ) satisfying (55) there exists unique regularized solution xα(δ)
of equation (52) on the set G. Furthermore, xα(δ) ∈ Vδ3µ/3 (x

∗) . In addition, the gradient
method of the minimization of the functional Jα(δ) (x) , which starts at x0, converges to
xα(δ). In the noiseless case with δ = 0 one should replace “ δ0 = δ0 (F, µ) ∈ (0, 1) ” with
α0 = α0 (F ) ∈ (0, 1) to be sufficiently small and also require that α ∈ (0, α0) .

Since we sequentially minimize the Tikhonov functional on subspaces {Mn}Nn=1 in the
adaptivity procedure, then we need to establish first the existence of a minimizer on each
of these subspaces. Theorem 4.2 ensures both existence and uniqueness of the minimizer of
the functional Jα on each subspace of the space H, as long as the maximal grid step size of
finite elements, which are involved in that subspace, is sufficiently small.
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Theorem 4.2. Let conditions of Theorem 4.1 hold. Let M ⊆ H be a subspace of H .
Assume that ‖x∗‖ ≤ B, where the number B > 0 is known in advance. Suppose that the

maximal grid step size h̃ of finite elements of M is so small that

h̃ ≤ δ4µ

5BRK
, (58)

where K is the constant in (51) and the constant R > 0 depends only on the operator
F . Furthermore, assume that the first guess x0 for the exact solution x∗ in the functional
Jα(δ) is so accurate that (57) is in place. Then there exists a sufficiently small number
δ0 = δ0 (F, µ) ∈ (0, 1) such that for every δ ∈ (0, δ0) there exists unique minimizer xM,α(δ) ∈
G ∩M of the functional Jα on the set G ∩M. Furthermore, xM,α(δ) ∈ Vδ3µ (x

∗) ∩M. Let
xα(δ) ∈ Vδ3µ/3 (x

∗) be the regularized solution of equation (52), which is guaranteed by Theorem
4.1. Then the following a posteriori error estimate holds

∥∥xM,α(δ) − xα(δ)
∥∥ ≤ 2

δ2µ
∥∥J ′

α

(
xM,α(δ)

)∥∥ . (59)

We are now ready to formulate our main result about the adaptivity, which is the relax-
ation Theorem 4.3

Theorem 4.3 (relaxation). Let Mn ⊂ H be the subspace obtained after n mesh refine-
ments, as described in subsection 4.1. Let hn be the maximal grid step size of the subspace
Mn. Suppose that all conditions of Theorem 4.2 hold with the only exception that the subspace
M is replaced with Mn and the inequality (58) is replaced with

hn ≤ δ4µ

5BRK
.

Let δ ∈ (0, δ0) , where the number δ0 ∈ (0, 1) is defined in Theorem 4.2. Let xn ∈ Vδ3µ (x
∗)∩

Mn be the unique minimizer of the functional Jα (x) in (54) on the set G ∩Mn (Theorem
4.2). Let xα(δ) ∈ Vδ3µ/3 (x

∗) be the unique regularized solution (Theorem 4.1). Assume that

xn 6= xα(δ),

i.e. xα(δ) /∈Mn , meaning that the regularized solution is not yet reached after n mesh refine-
ments. Let η ∈ (0, 1). Then one can choose the maximal grid size hn+1 = hn+1 (F, δ, B,K, η) ∈
(0, hn] of the mesh refinement number (n+ 1) so small that

∥∥xn+1 − xα(δ)
∥∥ ≤ η

∥∥xn − xα(δ)
∥∥ ,

where xn+1 ∈ Vδ3µ (x
∗) ∩ Mn+1 is the unique minimizer of the functional (54) on the set

G ∩Mn+1. Hence, ∥∥xn+1 − xα(δ)
∥∥ ≤ ηn

∥∥x1 − xα(δ)
∥∥ .

Theorems 4.1-4.3 are formulated for an abstract operator F . They need to be specified
for the case of CIP3.1 (section 3.1), which is a non-trivial task. This specification was done
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in [1, 7, 28]. Let Eα(δ) (εr) be the analog of the functional Jα (x) in (54) for the case of this
CIP. Let E ′

α(δ) (εr) be its Fréchet derivative. Then it was derived from (59) that

∥∥εr − εr,α(δ)
∥∥ ≤ 2

δ2µ
∥∥E ′

α(δ) (εr)
∥∥
L2(Ω)

, ∀εr ∈ Vδ3µ (ε
∗
r) . (60)

In addition, the following relaxation property was derived from Theorem 4.3

∥∥εr,n+1 − εr,α(δ)
∥∥ ≤ η

∥∥εr,n − εr,α(δ)
∥∥ , η ∈ (0, 1) ,

as long as εr,n 6= εr,α(δ) and the maximal mesh step size hn+1 on the subspace Mn+1 is
sufficiently small. The estimate (60) indicates that one should refine mesh on the refinement

step number n + 1 near those points where the function
∣∣∣E ′

α(δ) (εr,n) (x)
∣∣∣ . The explicit form

of the function E ′
α(δ) (εr,n) (x) was obtained in a standard way using the adjoint problem

method. Thus, we arrive at
Mesh Refinement Recommendation. Let β ∈ (0, 1) be the tolerance number, which

is chosen numerically. Refine the mesh in such subdomains of Ω where

∣∣E ′
α(δ) (εr,n) (x)

∣∣ ≥ β1max
Ω

∣∣E ′
α(δ) (εr,n) (x)

∣∣ . (61)

In all tests with adaptivity below we have used the mesh refinement recommendation
(61).

5 The WorkWith Experimental Data for Targets Placed

in Air

In this section we describe our work with backscattering experimental data for targets located
in the air. Results of this section are reflected in four publications [2, 3, 4, 6]. The main
challenge was a huge discrepancy between simulated and experimental data, compare Figures
3-a and 3-b. Therefore, one of key difficulties was to invent a new data preprocessing
procedure. The data preprocessing is inevitably a heuristic procedure. This procedure has
“moved” the pre-processed data closer to the simulated ones than the raw data. The pre-
processed data were used as an input for our globally convergent algorithm. Therefore, the
success of our studies of experimental data proves a significant degree of robustness of the
globally convergent method of this project.

We point out that in both preprocessing of experimental data and postprocessing of calcu-
lated results it is crucial to choose such parameters and procedures which would work for all
targets without any exceptions. Or at least one should choose one set parameters/procedures
for all dielectric and the second one for all metallic targets. If such a choice is possible, then
one can claim that such a procedure is both unbiased and stable. This is exactly what is
done below.

21



5.1 Data acquisition

Two main pieces of our experimental apparatus are Picosecond Pulse Generator and Tex-
tronix Oscilloscope, see Figure 1.

(a) (b)

Figure 1: Two main pieces of our experimental apparatus. a) Picosecond Pulse Generator
10070A. b) Textronix Oscilloscope.

(a) (b)

Figure 2: (a): A picture of our experiment setup; (b) Diagram of our setup.

Our experimental configuration is shown in Figure 2. Let E (x, t) = (Ex, Ey, Ez) (x, t) be
the vector of the electric field. Then it is clear from Figures 2-a,b that u (x, t) = Ey (x, t) ,
where u is the function in (1). The incident wave field is Einc (x, t) = (0, δ (x− x0) δ (t) , 0) .
It was demonstrated numerically in [29] that in this case |Ey (x, t)| >> |Ex (x, t)| , |Ez (x, t)|
and the propagation of the component Ey (x, t) is well governed by equation (1). This and
especially the accuracy of our results below justify the use of equation (1).

The setup of our measurements included a horn antenna (transmitter) fixed at a given
position and a detector scanned in a square of a vertical plane, which we refer to as the
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measurement plane. Consider the Cartesian coordinate system Oxyz as shown in Figure 2b.
The scanning area was 1 meter by 1 meter in both horizontal and vertical directions with
the step size of 0.02, starting at (x, y) = (−0.5,−0.5), and ending at (x, y) = (0.5, 0.5).

In our mathematical model (1), (2), we assume that the source point x0 is in R3 \
Ω. However, due to some technical difficulties with the mechanical scanning system, the
horn antenna was not placed behind but in front of the measurement plane (between the
measurement plane and the targets). Therefore a small area in the center of the scanning area
on the measurement plane was shaded by the horn. The horn was placed at the distance
of about 0.2-0.25 from the measurement plane and the distances from the targets to the
measurement plane are about 0.8.

At each position of the detector, a number of electric pulses were emitted by the horn. The
detector received two types of signals: the direct signals from the source and the backscatter
signals by the targets. The direct signals are used for time reference in data pre-processing.
There were also other unwanted signals due to scattering by some objects in the room. To
reduce the instability of the recorded signals in terms of magnitude, the measurements were
repeated 800 times at each detector position and the recorded signals were averaged. By
scanning the detector and repeating the measurements, we obtained essentially the same
signals as using one incident signal and multiple detectors at the same time.

Pulses were generated by the Picosecond Pulse Generator 10070A. The scattered signals
were measured by a Tektronix DSA70000 series real-time oscilloscope. The emitted pulses
were of 300 picoseconds duration. The wavelength of the incident pulses was about 0.03
m. The sampling rate (the step size in time between two consecutive records of captured
signals) was ∆t = 10 picoseconds. Each signal was recorded for 10 nanoseconds.

5.2 Six steps of data pre-processing

One of the biggest challenges in working with these experimental data is the huge misfit
between these data and the data produced via computational simulations. There are several
causes of this misfit such as:

1. The instability of the amplitude of the emitted signals (incident waves) which causes
the instability of the received signals.

2. Unwanted (parasitic) scattered waves caused by the presence of several existing objects
around our devices, see Figure 2a.

3. The shadow on the measurement plane caused by the transmitting horn antenna.

4. The difference between the experimental and simulated incident waves.

Figure 3 compares experimental and computationally simulated signals at the same de-
tector.
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(a) (b)

Figure 3: Experimental and simulated data at the same detector. a) Experimental data. b)
Computationally simulated data.

Figure 3 compares time resolved experimental and simulated data at the same detec-
tor. Computational simulations were performed for the model target which has the same
properties as the one which produces the signal on Figure 3-a).

Therefore, the central procedure before applying inversion methods is the data pre-
processing. So that the pre-processed data would look somewhat similar with computa-
tionally simulated data. This procedure is heuristic and cannot be rigorously justified. The
pre-processed data were used as input for the globally convergent algorithm. Our data pre-
processing consists of six steps described below. We do not describe steps 1-3, 6 in detail
here, since they are straightforward. However, steps 4-6 are completely new.
Step 1. Off-set correction. The acquired signals are usually shifted from the zero mean value.
This can be corrected by subtracting the mean value from them.
Step 2. Time-zero correction. Time-zero refers to the moment at which the signal is emitted
from the transmitter. The recorded signals may be shifted in time. We use the direct signals
from the transmitter to the detector to correct the time-zero.
Step 3. Source shift. As mentioned above, the horn antenna in our experiments is placed
between the targets and the measurement plane. However, in data calibration, we need to
simulate the data for the case when the measurement plane is between the horn and the
targets. Therefore, we artificially “shift” the horn in the positive z−direction such that it is
0.4 m further than the measurement plane from the targets. It is done by shifting the whole
time-dependent data by a number of samples which corresponds to the shifted distance.
Step 4. Extraction of scattered signals. Apart from the signals backscatter by the targets,
our measured data also contain various types of signals as mentioned above. What we need,
however, is the scattered signals by the targets only. The extraction of these scattered signals
for each target is done as follows. First, we exclude the direct signals and the unwanted
signals, which come earlier than the scattered signals by the target (see Figures 3-a and 4)
by calculating the time of arrival. These unwanted signals are due to the reflection of the
direct signals by the metallic structure behind the measurement plane, so we can estimate
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their times of arrival as we know the distance from the measurement plane to this structure.
We have observed that the scattered signals by the target are the strongest peaks of the

remaining ones. Hence, after removing the aforementioned signals, we first detect, for each
detector position, the strongest negative peak. Next, we consider the strongest negative
peak. Suppose that the amplitude of the first negative peak prior the strongest is less than
80% of the strongest one (see Figure 3-a)). Next, the scattered signals by the target are
taken as 7 peaks (4 negative peaks and 3 positive peaks) starting from that first negative
peak prior to the strongest one. However, if the amplitude of the first negative peak prior to
the strongest one is greater or equals 80% of the strongest negative peak, then we start from
the second negative peak prior to the strongest one. The reason for choosing 7 peaks for the
scattered signals is due to the fact that the incident pulses also contain 7 strong peaks. We
note that having the scattered signals by the target, we can easily determine the distance
from its front side to the measurement plane by calculating the time of arrival. We use the
resulting signal for data propagation.

The next round of extraction of scattering signals comes after data propagation. In this
case we choose the largest negative peak. Next, we choose the closest negative peak to the
left of it and set to zero the signal to the left of this second peak. We apply the Laplace
transform (6) to the resulting curve to get the boundary data for the function w (x, s).
Step 5. Data propagation. After getting the scattered signals, the next step of data pre-
processing is to propagate the data closer to the targets, i.e. to approximate the scattered
waves on a plane closer to the targets, compared to the measurement plane. There are two
reasons for doing this. The first one is that since the Laplace transform decays exponentially
in terms of the time delay, which is proportional to the distance from the targets to the
measurement plane, then the amplitude of the data after the Laplace transform on the
measurement plane is very small and can be dominated by the computational error. The
second reason is that this propagation procedure helps to reduce the computational cost
substantially as the computational domain Ω is reduced. We have also observed that the
data propagation helps to reduce the noise in the measured data.
Step 6. Data calibration. Finally, since the amplitude of the experimental incident and
scattered waves are usually quite different from simulations, we need to bring the former to
the same level of the amplitude as the latter. This is done using a known target referred to
as calibrating object.

It is clear from Figure 6 that the Laplace transform of the propagated data looks more
concentrated and less noisy than the Laplace transform of the measured data.

5.3 Data propagation

We now describe in detail our data propagation procedure of the above Step 5 (section 5.2).
Denote by Pm the measurement plane and by Pp the propagation plane, which is closer to
the targets than Pm. Without a loss of the generality, we denote by Pm = {z = a} and Pp =
{z = 0}, where the number a > 0. Moreover, denote by Γ = (−0.5, 0.5)× (−0.5, 0.5)} ⊂ R2

the scanning area of the detector on the plane Pm. Let Γm = {(x, y, a) ∈ R3 : (x, y) ∈ Γ}
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Figure 4: Schematic diagram of data propagation.

and Γp = {(x, y, 0) ∈ R3 : (x, y) ∈ Γ}. We also denote by us(x, t) the scattered wave.
Note that the medium between Pm and Pp is homogeneous with ε = 1 and the scattered
wave us propagates in the direction from Pp to Pm. The goal of the data propagation is to
approximate us

∣∣
Γp×(0,∞)

from the measured data g̃(x, y, t) := us
∣∣
Γm×(0,∞)

.

To do this, we make use of a time reversal method. Its idea is to reverse the scattered
wave in time via solution of an initial boundary value problem for the time-reversed wave
function. We proceed as follows.

Consider the domain D := {x = (x, y, z) ∈ R3 : (x, y) ∈ Γ, b < z < a} with b < 0. Note
that Γp ⊂ D. The reason for choosing this larger domain is that we need to assign boundary
conditions at ∂D. Since short pulses are used as incident waves, it is reasonable to assume
that the scattered wave us in the domain between Pm and Pp vanishes along with its time
derivative ust after some time T , i.e. us (x, t) = 0 for x ∈ D, t > T. Therefore, in the following
we consider only the finite time interval (0, T ). Denote τ := T − t. Then the time-reversed
wave function ur(x, τ) := us(x, t) satisfies the homogeneous wave equation. Moreover, it
propagates in the negative z direction, i.e. from Pm to Pp. We assume that the function
ur satisfies the absorbing boundary condition at Γb := {(x, y, b) : (x, y) ∈ Γ}. On Γb, far
from our propagation plane, this boundary condition means, heuristically, that we “send
back” the original scattered wave us recorded at Pm. On the other hand, we impose the
zero Neumann boundary condition at the rest of the boundary of D, except of Γm. Denote
QT = D× (0, T ) and Γ3 := ∂D \ (Γm∪Γb). We obtain the following problem for the function
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(a) (b)

(c) (d)

Figure 5: Extraction of scattered signals. a) Original signal at a detector. b) Signal extracted
from a) after shifting the source. c) Propagated signal. In propagation, extracted signals on
all detectors were used. c) Propagated signal detected at some point. d) Extracted signal of
c)

27



Figure 6: 2D and 3D representations of the Laplace transform (6) at a certain value of
s > 0 of the data at the measurement plane (left panel) and the propagated plane (right
panel). It is clear from this figure that the Laplace transform of the propagated data looks
more concentrated and less noisy than the Laplace transform of the measured data.
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ur(x, τ )

urττ = ∆ur, (x, τ ) ∈ QT , (62)

ur (x, 0) = urτ (x, 0) = 0, x ∈ D, (63)

ur
∣∣
Γm×(0,T )

= g̃(x, y, T − τ), (64)

(∂νu
r + ∂τu

r)
∣∣
Γb×(0,T )

= 0, (65)

∂νu
r
∣∣
Γ3×(0,T )

= 0. (66)

Theorem 1 below shows the stability of the problem (62)–(66). This theorem is proven
via a modification of the energy estimates method [57], and it can be extended to more
general domains and more general hyperbolic operators. For brevity we are not concerned
here with minimal smoothness assumptions and leave aside the question of existence. We
conjecture that it can be addressed via the technique of chapter 4 of [57].

Theorem 1 Assume that there exists a solution ur ∈ H2 (QT ) of the problem (62)-(66).
Also, assume that the function g̃ ∈ H2 (Γm × (0, T )) and there exists such a function F ∈
H2 (QT ) that

F (x, 0) = Fτ (x, 0) = 0, (∂νF + Fτ ) |Γb×(0,T )= 0, ∂νF |Γ3×(0,T )= 0,

F |Γm×(0,T )= g̃ (x, t) , ‖F‖H2(QT ) ≤ C ‖g̃‖H2(Γm×(0,T )) ,

where C > 0 is a certain number. Then that solution ur is unique and the following stability
estimate holds with a constant C1 = C1 (C,QT ) > 0 depending only on the listed parameters

‖ur‖H1(QT ) ≤ C1 ‖g̃‖H2(Γm×(0,T )) .

By solving the problem (62)–(66), we obtain an approximation of ur (x, τ ) and then
obtain an approximation of us for x ∈ Γp. We use the finite difference method to solve this
problem.

5.4 Data calibration

Usually the experimental data have quite different amplitudes compared to the simulations.
Figure 7 shows that the minimal value of the Laplace transform of the propagated measured
data is approximately −2 × 10−5, whereas the minimal value for simulated data is about
−5 × 10−9. We choose a number, which is called calibration factor, to scale the measured
data to the same scaling as in our simulations. To do this, we make use of the measured
data of a single calibrating object whose location, shape, size and material are known. The
word “single” is important here to ensure that the calibration procedure is unbiased, i.e. it
remains the same for all targets.

First, we computationally simulate the data on Γp for the calibrating object by solving
the problem (68)–(73), see section 2.6. Next, we compute the Laplace transform (6) of
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(a) (b)

Figure 7: Laplace transform (6) of the scattered wave on the propagation plane Pp. a) Mea-
sured data. The maximal amplitude of the peak is 2.5×10−5. b) Simulated data. The maximal
amplitude of the peak is 5× 10−9. Thus, the data calibration is necessary.

this computationally simulated solution. Below we work with s ∈ [s, s] . Numbers s, s are
chosen numerically. Denote by wt

sim (x, s), ws
sim (x, s) and wi

sim (x, s) respectively the Laplace
transforms of the total wave, the scattered wave and the incident wave of the simulated
solution for the calibrating object. Clearly, ws

sim (x, s) = wt
sim (x, s)− wi

sim (x, s). It can be
proved that ws

sim (x, s) ≤ 0. Figure 7-b) displays the function ws
sim (x, s) for x ∈ Γp and

qualitatively this is a typical behavior for all targets. Let

dsim,s = min
Γp

ws
sim (x, s) .

Next, for x ∈ Γp let ws
exp (x, s) be the Laplace transform of the propagated experimental

data for the calibrating object, see Figure 7-a). Denote

dexp,s = min
Γp

ws
exp (x, s) .

The number dsim,s/dexp,s is used as the calibration factor for all targets at pseudo-frequency
s. That means, the propagated measured data of all targets are multiplied by this calibration
factor before being used in the inversion algorithm.

We have two types of targets: dielectric and metallic targets. We have observed that two
different calibration factors should be used for these two types of targets, because the signals
from them have different levels of amplitude. First of all, we differentiated these two types
of targets by comparing the amplitudes of the recorded signals. Indeed, we have consistently
observed that the maximal values of amplitudes of measured signals are at least two times
larger for metallic targets than for dielectric ones on those positions of detectors which are
most sensitive to the presence of targets. Next, we chose in each type a known object as
the calibrating object. In other words, we should use a dielectric calibrating object for all
dielectric targets and another metal calibrating object for all metallic targets. As to metallic
targets, we have established in [17] that one should use the so-called appearing dielectric
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constant, whose values are
εr (metal) ∈ [10, 100] . (67)

The value of εr (x) for the dielectric calibrating object was taken as εr (x) = 4.28 inside
that target and ε (x) = 1 outside of it. For the metallic calibrating object, as suggested by
(67), we took εr (x) = 12 inside and ε (x) = 1 outside of it.

5.5 Dimensionless variables

The spatial dimensions in our experiment were given in meters. Since the scanning step in
our measured data was 0.02 m in both x and y directions, we chose the dimensionless spatial
variable x′ to be x′ = x/1(m). Next, to scale the wave speed to be 1 in the homogeneous
medium, as in our simulations, we chose the dimensionless time t′ by t′ = 0.3t where t
is the time given in nanoseconds (ns). The factor 0.3 is the speed of light in meters per
nanosecond in the free space. For the simplicity of notations, we use x and t again to denote
the dimensionless variables.

5.6 Data simulation

As it is clear from sections 5.2-5.4, we need to computationally simulate the data via solving
the forward problem (1), (2). On the other hand, it is clear that it is impossible to solve
equation (1) in the infinite space R3. Therefore, we have replaced R3 with a finite prism G
and used absorbing boundary conditions on those sides of this prism, which are perpendicular
to z−axis, and used zero Neumann boundary condition at the rest of the boundary of this
prism.

Although a point source is used in the forward model (1), (2) for theoretical analysis, we
make use of an incident plane wave in our numerical implementation. The prism G is

G := {x = (x, y, z) ∈ R3 : Xl ≤ x ≤ Xu, Yl ≤ y ≤ Yu, Zl ≤ z ≤ Zu}.

Denote by ∂Gl
z := {z = Zl}, ∂Gu

z := {z = Zu} and ∂Gxy = ∂G \ (∂Gl
z ∪ ∂Gu

z ). An
incident plane wave of a short time period is excited at ∂Gu

z and propagates in the negative
z direction. At the plane ∂Gl

z we assume that the absorbing boundary condition is satisfied,
and at ∂Gxy we assign the homogeneous Neumann boundary condition. More precisely, we
solve the following problem

εr(x)utt(x, t) = ∆u(x, t), (x, t) ∈ G× (0, T ), (68)

u(x, 0) = 0, ut(x, 0) = 0, x ∈ G, (69)

∂νu = f(t), (x, t) ∈ ∂Gu
z × (0, t1), (70)

∂νu = −ut, (x, t) ∈ ∂Gu
z × (t1, T ), (71)

∂νu = −ut, (x, t) ∈ ∂Gl
z × (0, T ), (72)

∂νu = 0, (x, t) ∈ ∂Gxy × (0, T ), (73)
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where ν is the outward unit normal vector of ∂G and t1 := 2π/ω is the duration of the
excitation of the incident plane wave. Function f is the incident waveform chosen by

f(t) = sin(ωt), 0 ≤ t ≤ t1 = 2π/ω.

We have chosen ω = 30. The forward problem (68)–(73) is solved via the hybrid FEM/FDM
method described in [1].

Because of our specific experimental arrangement, we now specify the domain G. We
also specify the computational domain Ω where the inverse problem is solved. Given the
estimated distances from the targets to the measurement plane, which were about 0.8 m,
we propagated the measured data from the measurement plane Pm = {z = 0.8} to the
propagated plane Pp = {z = 0.04}. This means that the distance from the front sides of
the targets to the backscattering boundary of our inversion domain was about 0.04 m. The
reason for choosing this distance was due to good reconstruction results we have obtained
for several non-blind targets. The domain Ω was chosen by

Ω = {x = (x, y, z) ∈ (−0.5, 0.5)× (−0.5, 0.5)× (−0.1, 0.04)} . (74)

For solving the forward problem (68)–(73), using the hybrid FDM/FEM method, we choose
the domain G as

G = {x = (x, y, z) ∈ (−0.56, 0.56)× (−0.56, 0.56)× (−0.16, 0.1)} . (75)

This domain G was decomposed into two subdomain: G = Ω ∪ (G \ Ω). We recall that
ε(x) = 1 in G \ Ω. Therefore, it is only necessary to solve the inverse problem in Ω. In Ω
we use a FEM mesh with tetrahedral elements, while in G \Ω we use a FDM mesh with the
mesh size of 0.02× 0.02× 0.02 in Test 1 and 0.01× 0.01× 0.01 in Test 2 below. The reason
for using the FEM mesh in Ω is that it is possible to refine the reconstruction using adaptive
mesh refinement.

The time interval (0, T ) in the forward problem (68)–(73) was chosen equal to (0, 1.2).
Since the explicit scheme in time was used, the time step size was chosen as ∆t = 0.0015
which satisfies the CFL stability condition. The pseudo frequencies sn were chosen from
s = 8 to s = 10 with the step size h = 0.05. This pseudo frequency interval was chosen
because it gave good reconstructions of the non-blind targets.

5.7 Complementing backscattering data

Consider the boundary function ψ(x, s) in (19). We recall that only backscatter signals were
measured in our experiments. This means that after data propagation, the function ψ(x, s)
was known only on the side Γp = {x ∈ ∂Ω : |x| , z = 0.04} of Ω. As in [16], we replace the
missing data on the other parts of ∂Ω by the corresponding solution of the forward problem
in the homogeneous medium. In other words, in our computations, function ψ is given by

ψ(x, s) =

{
ψprop(x, s), x ∈ Γp, s ∈ (s, s̄),

ψi
unif(x, s), x ∈ ∂Ω \ Γp, s ∈ (s, s̄),

(76)
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(a) (b)

Figure 8: Estimation of x, y sizes of targets. a) Metallic cylinder. b) Wooden doll whose
bottom is filled with the sand and air is in the top.

where ψprop is the function ψ computed from the propagated measured data at Γp and ψ
i
unif

is computed from the simulated solution of the problem (68)–(73) with ε(x) ≡ 1 in the wave
equation (68).

Recall that our measured data were collected with the step size of 0.02 m in x and y
directions. To obtain the data at the same grid size as in our computational domain, we
applied the linear interpolation to the Laplace transform of the propagated measured data.

5.8 Postprocessing

5.8.1 Estimation of the xy projection

We have observed that the xy projection of a target can be roughly estimated directly from
the propagated data. Let s be the upper bound of the pseudo frequency interval on which
we apply the globally convergent method. Define ΓT as

ΓT = {(x, y) : vprop(x, y, zprop, s̄) < 0.85min vprop(x, y, zprop, s̄)}, (77)

where zprop = 0.04 is the value of z on the propagated plane Pp and vprop is the function
v = ln (w) /s2 which is constructed from the propagated measured data on the propagation
plane Γp. The truncation value 0.85 was chosen based on trial-and-error tests on some non-
blind targets with known sizes. We observed that ΓT provides a good approximation for the
xy projection of a target. Note that the same truncation was applied to blind targets as
well. Hence, it is not biased.

5.8.2 Estimation of the z−size and the shape

The thing left to estimate is the size in the z−direction, i.e. the depth in the z−direction.
Along with the above estimates of x, y−sizes this is supposed to provide an estimate of the
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shape of the target. The z−size is more challenging than x, y−sizes. At this point of time
we have a postprocessing procedure which sometimes gives us a good estimate of the z−size
and sometimes underestimates it. We keep working on refining this procedure. The current
procedure is as follows.

Let εrec (x) be the coefficient εr (x) reconstructed by our globally convergent method. Let
Pz0 := {z = z0} be the plane where the function εrec (x) achieves its maximal value. Then
we compute the truncated coefficient function ε̃rec (x) as

ε̃rec (x) =

{
εrec (x) if εrec (x, y, z0) > γmax εrec (x, y, z0) ,

1 otherwise,
(78)

where γ ∈ (0, 1) is a truncation factor chosen such that the area of {ε̃ (x, y, z0) > 1} is the
same as that of ΓT , see (77) for ΓT . Finally, we approximate the depth in the z direction by
truncating ε̃rec (x) by 90% of its maximal value. This truncation value is chosen based on
the trial-and-error tests with non-blind targets.

5.9 Targets in experiments

We have tested both dielectric and metallic targets. Recall that in metallic targets εr ∈
[10, 30] is the so-called appearing dielectric constant of metals, see (67). In some experi-
ments we had only a single target and in others we had two targets simultaneously with the
6 centimeters distance between their surfaces. We had both non-blind and blind targets.
“Blind” means that the computational group did not have any information about those tar-
gets prior to conducting computations. Data for non-blind targets were used for calibration.
Clearly blind cases are the most challenging ones. In blind cases we have conducted compu-
tations first. And only in a few weeks after this we got the true information about targets.
The information was delivered by Mr. Steven Kitchin, an engineer who was working part
time on this grant. He has collected these data.

5.10 Results of the globally convergent method

Tables 1-5 of this section are quite informative ones. Indeed, they provide the cumulative
results of our studies of experimental data.

5.10.1 Tables

We had total fourteen (14) targets. Three (3) of them were heterogeneous ones: (a) wooden
doll with air inside, (b) the same doll with a piece of metal inside and (c) the same doll,
whose bottom part is filled with sand. We believe that these heterogeneous targets model
IDEs, since many of IEDs are mixtures of several substances. Table 1 provides a cumulative
view on these targets.
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Table 1: Targets
Number of targets Blind Non-blind Heterogeneous
14 8 6 3

Table 2: Targets in detail. The true information about blind targets 7-14 was obtained only
after computations were conducted. Blind targets 12,13,14 are heterogeneous ones.

target number details blind non-blind
1 prism, oak no yes
2 prism, pine no yes
3 prism, pine no yes
4 sphere, metal no yes
5 cylinder, metal no yes
6 cylinder, metal no yes
7 prism, dielectric yes no
8 prism, metal yes no
9 two prisms, metals yes no
10 prism, metal yes no
11 two prisms, dielectrics yes no
12 wooden doll, air inside yes no
13 wooden doll, metal inside yes no
14 wooden doll, sand inside yes no

35



Table 2 lists all targets of out tests. Target 3 is the same as target 2, but on a different
distance from the measurement plane. Target 6 is the same as target 5, but again on a
different distance from the measurement plane.

Rerfactive indices n =
√
εr of dielectric targets were measured directly after computations

were conducted. We define the computed refractive index of a target as

ncomp (target) = max
Ω

√
εr,comp (x), (79)

where εr,comp (x) is the computed function εr (x) . We have observed in our computations
that the maximal value in (79) is always reached within the imaged target, which follows
from (78). Table 3 gives an information about measured and computed refractive indices of
dielectric targets.
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Table 3: Drectly measured and computed refractive indices n of targets. “X/Y ” in target 11
means that X corresponds to the upper target and Y corresponds to the lower target. Targets
7,10,11,12,14 are blind ones. Targets 12,14 are heterogeneous. Tests 1,2,3,4 differ from each
other by different parameters of the inversion procedure.
target number 1 2 3 7 11 12 14 Average error
measured 3.11 1.84 1.84 3.14 1.84/3.14 1.89 3.1
error 19% 18% 18% 28% 18%/28% 30% 26% 23%
test 1 1.92 1.8 1.81 1.83 1.98/1.96 1.86 1.92
error 9% 3.2% 1.6% 16.9% 7.6%/9.1% 1.6% 9.3% 7.16%
test 2 2.08 2.01 2.07 3.22 3.21/2.03 1.83 3.2
error 1.4% 9.2% 12.5% 3.7% 20.1%/5.4% 3.2% 4.8% 7.5%
test 3 2.03 1.96 1.65 3.1 3.2/3.13 1.85 2.05
error 3.9% 6.5% 11.5% 1.9% 19.5%/0.5% 3.1% 2.4% 6.0%
test 4 2.02 2.01 2.02 2.03 2.08/2.06 1.97 2.02
error 4.4% 9.2% 9.8% 5.4% 13%/3.9% 4.2% 9.6% 7.43

THREE IMPORTANT OBSERVATIONS FROM TABLE 3:

1. The average error in computations is at least three (3) times less than the average error
of direct measurements.

2. Refractive indices of targets are imaged with a good accuracy, including the most
challenging blind cases 7,11,12,14. This is especially true for cases of a single target:
1,2,3,7,12,14.

3. The most interesting cases 12,14 of blind heterogenous targets, which model heteroge-
neous IEDs, demonstrate a good accuracy: the computational error is between 3.1%
and 9.6%.
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Table 4: Computed appearing dielectric constants εcomp
r = maxΩ εr,comp (x) of metallic targets,

see (67). “X/Y ” in target 9 means that X corresponds to the upper target and Y corresponds
to the lower target. Targets 8,9,13 are blind ones. Target 13 is heterogeneous. Tests 1,2,3,4
differ from each other by different parameters of the inversion.

target number 4 5 6 8 9 10 13
test 1 14.37 16.93 16.45 25 12.66/13.1 13.61 13.56
test 2 15.18 23.33 25 25 40.53/41.78 14.13 14.05
test 3 7.59 10.76 19.5 19.5 11.07/13.1 8.12 7.89
test 4 15 15 15 15 13.53/14.06 15 14.33

THREE IMPORTANT OBSERVATIONS FROM TABLE 4:

1. We can confidently image large contrasts in inclusions. This is hard to do for locally
convergent methods.

2. Comparison of tables 3 and 4 demonstrates that we can confidently distinguish between
dielectrics and metals.

3. The blind heterogeneous target 13 was a wooden doll with a piece of metal inside. It
models the case of an IED in which an explosive is covered by an innocent material.
Nevertheless, our calculations clearly demonstrate the presence of a metal.

5.11 Some specifications for the adaptivity

As it was pointed out in Introduction and in section 4, we have applied a two-stage numerical
procedure. The first stage is the globally convergent numerical method. This stage has
provided accurate values of refractive indices n =

√
εr of dielectric targets and appearing

dielectric constants εr of metallic targets. It is important to point out that the theory
guarantees that the first stage provides points in a small neighborhood of the exact coefficient.
Therefore, the Tikhonov functional does not have local minima in this neighborhood. The
second stage is the locally convergent adaptivity method. This method uses the solution
obtained on the first stage as the starting point for iterations. Adaptivity refines images
via providing accurate shapes of targets. This is done via sequential minimization of the
Tikhonov functional on a sequence of locally refined meshes of finite elements.

Data pre-processing procedure for the adaptivity is a little bit different from that of the
first stage. This is because the adaptivity works in time domain, whereas the globally con-
vergent method works in Laplace transform domain. In addition, the image postprocessing
procedure of the adaptivity is different from the one of the first stage. Thus, we describe in
this subsection those procedures. We work with propagated data and Ω, G,Γp are the same
as in subsections 6.6, 6.7. Other details can be found in our paper [3].
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5.11.1 Data calibration

Let the function gexper (x, t) , x ∈ Γp, t ∈ (0, T ) be our propagated experimental data. This
function is given only on grid points (xi, tj) .We compute the maximal value of this function,

gmax = max
(xi,tj)

gexper (xi, tj) .

Usually the number gmax is quite large. Next, let usim (x, t) be the function which is computed
via solving the problem (68)–(73) where εr (x) is the function εr (x) computed by the globally
convergent method. Let

umax = max
Γp×[0,T ]

usim (x, t) .

Define
r =

umax

gmax
.

Next, we assign
uincl (xi, tj) := r · gexper (xi, tj)

and use the function gincl (xi, tj) as our data at Γp.

5.11.2 Data immersing

The final step of data preprocessing, the so-called “immersing procedure”, which is also
heuristic and is done as described below. This procedure does two things:

• immerses the data gincl (x, t) into computationally simulated ones;

• extends the data gincl (x, t) from Γp to larger rectangle Γ1,

Γ1 = {(x, y) ∈ (−0.56, 0.56)× (−0.56, 0.56) , z = 0.04} .

To explain the necessity of such data extension, we refer to (74), (75) and note that the
domain Ω is smaller than the domain G and Γ1 is the orthogonal projection of G on the
plane {z = 0.04}. On the other hand, we need the data at Γ1 to solve the so-called adjoint
problem which appears in the computation of the gradient of the Tikhonov functional.

We define our immersed function uimmers (x, t) for (x, t) ∈ Γ1 × (0, T ) as

uimmers (x, t) =





gincl (x, t) , if x ∈ Γp and gincl (x, t) ≥ βmaxΓp
gincl (x, t) ,

usim (x, t) , if x ∈ Γ and gincl (x, t) < βmaxΓp
gincl (x, t) ,

usim (x, t) , if x ∈ Γ1�Γp.

(80)

We choose the parameter β = 0.5 in (80) in numerical experiments of section 6.12.
Figures 9 and 10 show that, depending on the parameter β in (80), the data immersing

procedure not only allows to extend the data from Γp to Γ1�Γp but also make the exper-
imental data usable in our inverse algorithm. Indeed, we note that the experimental data
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is measured at a very high frequency, say, ω ≈ 170, whereas our simulations are done at
ω = 30 in order to reduce the computational cost. Therefore, the experimental data are not
compatible with the simulations. Our immersing procedure helps to avoid solving the prob-
lem at a very high frequency. After this immersing procedure we solve the inverse problem
using the adaptivity.
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Figure 9: Backscattered immersed data of the second component E2 of electric field for
object number 7 (wooden doll, empty inside) of Table 2 for different values of the parameter
β in (80). Recall that the final time is T = 1.2.

5.11.3 Postprocessing of results

Let εr (x) be the function obtained in the adaptive algorithm. We form the image of the
dielectric targets based on the function εr,diel (x) ,

εr,diel (x) =

{
εr (x) if εr (x) ≥ 0.85maxΩ εr (x) ,
1 otherwise.
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Figure 10: Backscattered immersed data of the second component E2 of electric field for
object 7 (wooden doll, empty inside) of Table 2 for different values of the parameter β in
(80). Recall that the final time is T = 1.2.

As to the metallic targets (i.e., the ones with large computed maximal values of εr (x)), we
use the function εr,metal (x) ,

εr,metal (x) =

{
εr (x) if εr (x) ≥ 0.3maxΩ εr (x) ,
1 otherwise.

We point out that, in our experience, the adaptive algorithm does not change refractive
indices of dielectric targets and appearing dielectric constants of metallic targets.

5.12 Images resulting from the two-stage numerical procedure

In this subsection we present some results of our two-stage numerical procedure. The first
stage is the globally convergent method and the second stage is the adaptivity. This pro-
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(a) (b) (c)

Figure 11: a) The image of the target #1 (wooden prism, table 2) obtained by the globally
convergent method. b) The image of the target #1 obtained by the two-stage numerical
procedure. c) Zoomed image of b).

cedure accurately reconstructs all three components of targets: refractive indices, locations
and shapes. In the case of metallic targets refractive indices are replaced with appearing di-
electric constants. While refractive indices and appearing dielectric constants were presented
above in Tables 3,4, here we present samples of computed images of shapes of targets.

6 Targets Buried in the Sand

We have collected some experimental data for the case of targets hidden in the dry sand.
Those are both dielectric and metallic targets. The data collection process is continuing.
Figure 14 displays our experimental arrangement. Just as in the experimental setup of
targets in the air, we have The box on this figure is filled with the dry sand. We have
measured the refractive index of sand n (sand) = 2.04. Hence, εr (sand) ≈ 4.16 = (2.04)2 .
Note that the front surface of the sand box is not flat, which complicates our inversion
procedure even more. Targets are immersed in the sand box. The distance between front
side of the target and the front side of the sand box varies between 2 cm and 10 cm. Note
that we do not know this distance in advance. Rather, we calculate it from our data. To do
this, we modify our data pre-processing procedure of section 5 for targets located in the air.
The data acquisition process is the same as the one described in subsection 5.1. The data
simulation is the same as in section 5.6.

First, we have measured the signal from sand without targets, i.e. the reference signal.
Next, we have measure signals for the cases when targets are immersed in the sand, see
Figure 14. The major complication here is that the reference signal from the sand is heavily
mixed with the signal from the case of targets immersed in the sand. Therefore, the data
preprocessing procedure is again the central one here and it should be different from one of
the case when targets are placed in air. Just as in section 5, we had six data preprocessing
steps:
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(a) (b) (c)

Figure 12: a) The image of the target #4 (metallic sphere, table 2) obtained by the globally
convergent method. b) The image of the target #4 obtained by the two-stage numerical
procedure. c) Zoomed image of b).

(a) (b) (c)

Figure 13: a) The image of the target #12 (wooden doll, table 2) obtained by the globally
convergent method. This is a heterogeneous target since air is inside that doll. b) The image
of the target #12 obtained by the two-stage numerical procedure. c) Zoomed image of b).
One can observe on c) that even the “head” of the doll is appearing, although the shape of
this doll is non convex.
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Figure 14: A photograph of the experimental arrangement of the sand box measurements.
Targets are immersed in this sand box. The distance between the front side of the target and
the front side of the sand box varies between 2 cm and 10 cm. The front surface of the sand
box is not flat, which complicates our inversion procedure.

1. Off-set correction.

2. Time-zero correction.

3. Source shift.

4. Data propagation.

5. Extraction of scattered signals.

6. Data calibration.

While steps #1,2,3,6 were basically the same as ones in section 6, steps 4 and 5 were
different and we outline them here. We also note that, unlike targets placed in air, where
different calibration factors were found of metallic and dielectric targets, we use here only
one calibration factor.

6.1 A new idea for data propagation

In section 6 we have used the time reversal method for data propagation, we have observed
numerically that it works better than a simpler Stolt migration method on computationally
simulated data. However, on experimental data the Stolt migration method works better
than the time reversal method. Basically the Stolt migration provides better quality data
than time reversal for the case of two targets present simultaneously. The Stolt migration is
popular in Geophysics, see [64, 69]. However, in the standard Stolt migration the wave at
the initial time is calculated in the whole spatial domain of interest, whereas we calculate
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the wave only at a plane parallel to the measurement plane but in the whole time interval.
This technique is described as follows.

Let x = (x, y, z). We assume that the scattered wave propagates in the positive z-
direction. Denote by Pm = {z = b}, b > 0, the measurement plane and by Pp = {z = a},
with a < b, the propagated plane, which is closer to the target of interest than Pm. We
also denote by us(x, t) the scattered wave. Our objective here is to determine the function
g(x, y, t) := us(x, y, a, t), given the measured data f (x, y, t) := us(x, y, b, t). We assume that
the medium is homogeneous in the half space z ≥ a with ǫ ≡ 1. Therefore, us is the solution
of the following problem:

ustt −∆us = 0, x ∈ R3, z ≥ a, t ∈ (0,∞), (81)

us(x, 0) = ust (x, 0) = 0. (82)

Consider the Fourier transform

ûs(kx, ky, z, ω) =

∞∫

0

∞∫

−∞

∞∫

−∞

us(x, y, z, t)e−i(ωt+xkx+yky)dxdydt. (83)

It follows from (81) that ûs satisfies the equation:

ûszz + (ω2 − k2x − k2y)û
s = 0, z ≥ a, (84)

û(kx, ky, z, ω) = ĝ(kx, ky, ω), (85)

where ĝ(kx, ky, ω) is the Fourier transform (83) of g(x, y, t). We consider two cases:
Case 1: ω2 − k2x − k2y < 0. Keeping in mind that the scattered wave propagates in the

positive z-direction, the problem (84)–(85) has the following solution

ûs1(kx, ky, z, ω) = ĝ(kx, ky, ω) exp
(
−(z − a)

√
k2x + k2y − ω2

)
, z > a. (86)

Case 2: ω2 − k2x − k2y ≥ 0. Then the solution ûs can be represented as

ûs2(kx, ky, z, ω) = ĝ(kx, ky, ω) exp
(
−i(z − a)

√
ω2 − k2x − k2y

)
, z > a. (87)

The negative sign in the exponential term in this formula is due to the fact that the scattered
wave is out-going in the positive z-direction.

Since the solution (86) is exponentially decaying as z → ∞, which represents the evanes-
cent wave, it practically cannot propagate to the measurement plane, which is in the far field
zone. Hence,

f̂(kx, ky, ω) = ûs2(kx, ky, b, ω) = ĝ(kx, ky, ω) exp
(
−i(b− a)

√
ω2 − k2x − k2y

)
.

Using the inverse Fourier transform, we obtain

g(x, y, t) =

∫∫∫

ω2−k2x−k2y>0

f̂(kx, ky, ω)e
i(b−a)

√
ω2−k2x−k2yei(ωt+xkx+yky)dkxdkydω. (88)
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Given the data f(x, y, t) at the measurement plane, we compute f̂ as well as g(x, y, t) via
(88) using the Fast Fourier Transform.

For each data set, the propagated plane Pp was determined as follows. We first propagated
the data to the sand’s surface. Using this propagated data, we estimated the burial depths
of the targets (subsection 7.2). Next, if the burial depth of the target closest to the sand
surface was larger than 4 cm, we propagated the data again from the measurement plane
up to the plane Pp, whose distance to the front surface of that target was approximately 4
cm. Otherwise, we used the data propagated up to the sand’s surface for the next step of
data preprocessing. Note that even we propagated the data beyond the sand’s surface, we
still saw the reflection from the sand’s surface in the propagated data since we did not take
into account the presence of the sand box in the data propagation, i.e., when propagating
the data in the sand, we assumed that ǫ = 1 in the sand. This reflection from the sand’s
surface was removed when the targets’ signals were extracted, see subsection 7.2. Note that
the grid points at Pp are the same as the ones at the measurement plane Pm. Thus, below
we call “detectors” the grid points at the propagated plane Pp.
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Figure 15: Result of the data propagation for signals from two targets buried inside the sand
box. The signals of the two targets are well separated from each other as well as from the
reflection from the sand’s surface after the data propagation.

A result of the data propagation is illustrated in Figure 15. The figure shows a horizontal
scan of the sand box containing two buried metallic targets. The horizontal side denotes the
indices of the detector’s locations and the vertical side denotes time. Time increases from
the top to the bottom. The propagation distance, b − a, is 0.8 m, which means that the
propagated plane Pp almost coincides with the sand’s surface. Figure 15(a) shows the original
data while Figure 15(b) shows the data after the propagation. As can be seen from these
figures, the targets’ signals in the original data are smeared out. On the other hand, they
are focused after the data propagation making the two targets more clearly distinguished.
This is well known for migration methods. Moreover, we can also see that the reflection from
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the sand’s surface is also more visible after the propagation and is well separated from the
targets’ signals.

6.1.1 Estimation of the burial depth

Since the sand’s surface reflects our microwave pulses and these reflected waves arrive at the
detectors before the ones reflected from the targets (see Figure 15(b)), the targets’ signals
are dominated by that of the sand’s surface after the Laplace transform. In addition, the
measurement noise appearing earlier than the targets’ signals also affects the latter after the
Laplace transform due to the exponential decay of the kernel, see Figure 17(a). Therefore,
an additional important data preprocessing step is needed in order to pick up only the
reflection from the targets and remove unwanted signals and noise coming earlier than the
targets’ signals. This step is applied to the propagated data as described below.

We first define some terms which are used in this subsection. These terms are related only
to the propagated plane Pp. The strongest detector in a data set is defined as the detector at
which the recorded signal has the largest amplitude. A strong target is either a metallic one
or a nonmetallic one whose dielectric constant is larger than that of the sand. If the dielectric
constant of a target is smaller than that of the sand, we call it a weak target. The strongest
negative (positive) peak of a time-dependent signal at a certain detector’s location is the
negative (positive) peak whose amplitude is larger than the amplitudes of other negative
(positive) peaks of the same signal.

We first estimate the burial depth of a target in each data set. For this purpose, we took
the strongest detector. We first determined the strongest negative peak among the first four
peaks, starting from the first negative peak, see Figure 16. This strongest negative peak is
considered as the strongest negative peak of the sand’s signal. After that, we excluded those
first four peaks. The reason for considering those four peaks was due to our observation
that those peaks should belong to the reflection from the sand’s surface. Moreover, the first
two negative (so as two positive) peaks of the incident wave were increasing in amplitude.
After that, the negative (so as positive) peaks of the incident wave decreased in amplitude.
Therefore any increase in amplitude of the peaks after those first four peaks should be due
to the reflection from the target. By detecting the next negative (or positive) peak which
was stronger than the previous negative (positive) one, we located the target’s signal. Then,
we determined the strongest negative peak of the target’s signal. Denoting by ∆t the time
delay between the latter peak and the strongest negative peak of the sand’s signal, the burial
depth of the target was approximated by n(sand)∆t, where n(sand) =

√
εr(sand) = 2 is the

refractive index of the sand.

6.2 Extraction of target’s signal: the most difficult step of data
preprocessing

After estimating the burial depth, we extracted the target’s signal. The extraction of signals
of targets in air is quite simple. However, it is very challenging in the case of buried objects,
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Figure 16: One-dimensional propagated signals at the strongest detectors of two targets:
one strong target and one weak target. The signals consist of the reflection from the sand’s
surface followed by the reflections from the targets.

especially for weak targets. Indeed, when a weak target is buried at a shallow depth, its
signal is merged with the reflection from the sand’s surface. When it is buried at a deep
depth, its signal is usually too weak to be visible in the data. Our experimental observations
have shown that if a weak target is buried at a depth of more than 5 cm, then we cannot
detect it. In this case, the target is missed.

As in estimating the burial depth, we also worked with the strongest detector first and
excluded the first four peaks. After that, we selected the target’s signal as follows: (i)
Suppose that either the burial depth was larger than 5 cm, or the strongest negative peak of
the target’s signal was larger than that of the sand’s signal in amplitude. Then we choose
as the first peak of the target’s signal the strongest negative peak located after the excluded
ones; (ii) otherwise, the first peak of the target’s signal was determined as the first positive
peak which was larger than the previous positive one, provided that such a peak exists, see
Figure 16. Since the reconstructed dielectric constants of targets of case (i) (respectively, case
(ii)) was always larger (smaller) than that of the sand, we also categorized a target in case
(i) (case (ii)) as a strong (weak) target. For all other detectors, we started from those closest
to the strongest detector and on each of them assigned as the first peak of the target’s signal
the one which was time wise closest to that of the strongest detector. For strong targets
this one should be a negative peak, while it was a positive peak for weak targets. Next,
we continued similarly on all other detectors via sequentially choosing those peaks closest
to the one of the previous detector. The reason for choosing a negative (positive) peak as
the first peak of the target’s signal for strong (weak) targets was due to our observations in
numerical simulations and experimental data which have indicated that:

a. For a strong target, the first peak of the target’s signal should be negative.
b. For a weak target, the first peak of the target’s signal should be positive.
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Moreover, if a strong target is buried at a depth less than 5 cm, then its signal is stronger
than that of the sand in amplitude. If the burial depth is more than 5 cm, then its signal
might not be stronger than that of the sand. However, since, as we mentioned above, weak
targets are not visible at depths larger than 5 cm, we consider all targets buried at these
depths as strong targets.

In all above cases, the data before the chosen first peak of the target’s signal were set to
zero. Hence, the Laplace transform of the preprocessed data is not affected by values before
the first chosen peak. We note that such a choice of starting peaks artificially immerses
our targets in air: because we exclude the reflection from the sand’s surface. Therefore,
what we reconstruct for each target by the globally convergent method is the ratio between
its dielectric constant (or the effective dielectric constant for metals) and that of the sand,
εr (target) /εr (sand). Next, to obtain the value of the dielectric constant of the target, we
multiply this ratio by εr (sand) = 4.

Figure 16 shows one-dimensional propagated signals at the strongest detectors of a strong
target and a weak target. We indicate there the sand’s signal and the peaks of the targets.
These peaks were chosen as the first peaks of signals from the targets. Samples of the Laplace
transform of the data before and after the extraction of the targets’ signals are shown in
Figure 17, which indicate the necessity of this preprocessing step.

Figure 17 (b) also shows that the preprocessed data allow us to estimate locations of the
targets in x, y directions as well as their xy-cross sections, see subsection 5.8.1. These types
of information help to reduce the domain in which we look for the targets. Indeed, in Test
2 below, we took into account these types of information in choosing the first tail function.
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(a) Before the extraction of the targets’ signals (b) After the extraction of the targets’ signals

Figure 17: The Laplace transforms of the data on the propagated plane before (a) and after
(b) the extraction of the targets’ signals. Without the extraction, we cannot see the targets.
After the extraction, the two targets show up clearly.
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6.3 Two tests and stopping criteria

We have analyzed the performance of the proposed algorithm with two different tests: Test
1 and Test 2. In Test 1, we made use of the first tail function as described in subsection 3.6,
with which the global convergence is rigorously guaranteed. In Test 2, the estimated burial
depth and the xy-cross section of the target via the data preprocessing procedure were used
to restrict the domain in which the coefficient εr was reconstructed and to choose the first tail
function. More precisely, for each target, let xt,min = min{x ∈ ΓT}, xt,max = max{x ∈ ΓT},
where ΓT is the estimated xy cross section of the target, see subsection 5.8.1. The numbers
yt,min and yt,max are defined similarly. Then, we define the extended xy cross section by

ΓT,ext = {xt,min − 0.03 < x < xt,max + 0.03, yt,min − 0.03 < y < yt,max + 0.03}.

Moreover, denote by zt,front the estimated location of the front side of the target in the z
direction, given by the burial depth estimation. We then define the following domain ΩT,ext

ΩT,ext := {x = (x, y, z) ∈ Ω : (x, y) ∈ ΓT,ext, −0.2 < z < zt,front + 0.02}.

Clearly, ΩT,ext ⊂ Ω. Moreover, this domain should contain the unknown target we are
looking for. The last number 0.02 was for compensating for possible error in the estimated
burial depth of the target. Next, we chose the first tail function V1,1 as the function (41),
where the function w (x, s) was computed for the coefficient εr (x) := εr,0 (x), where

εr,0 (x) = εr,u, for x ∈ ΩT,ext, εr,0 (x) = 1, for x /∈ ΩT,ext.

The upper bound εr,u for the function εr,0 (x) was chosen as εr,u = 25.
Although the convergence of the resulting algorithm for Test 2 has not been rigorously

proved yet, our numerical results show good reconstructions, see also [4] for accurate results
when targets are in air. Note that we did not use a priori information about the targets.
Instead, the information used in choosing the first tail function was derived from data pre-
processing.

Stopping criteria:
Stopping criterion of Test 1: The inner iterations with respect to i are stopped at i = mn

such that
Dn,i ≥ Dn,i−1, or i < imax,

where Dn,i = ||Vn,i|Γp
− Vprop||L2(Γp). Here Γp is the backscattering side of Ω, Vprop is the tail

function computed from the propagated data at Γp, and imax is the maximum number of
inner iterations. In Test 1, we have chosen imax = 8.

The outer iteration with respect to the pseudo frequency s are stopped when the error
function Dn,1 attains the first local minimum with respect to n.

Stopping criterion of Test 2: The inner iteration are stopped using the same criterion as
in Test 1 but with imax = 5. The outer iteration is stopped when the error function Dn,mn

,
i.e., the error function at the final inner iteration, attains the first local minimum.

We have observed in our tests that these stopping criteria gave good results for non blind
targets.
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6.4 Results of the globally convergent method and some discus-
sion

In Tables 6 and 7 we summarize reconstruction results of the two tests for the data sets listed
in Table 5. Table 6 shows the results for the non metallic targets. For these targets, the
refractive index n(target) =

√
εr(target) (as above, εr(target) was chosen by εr(target) =

maxx∈Ω εr(x)) is shown instead of the dielectric constant ǫ because n(target) was directly
measured after computations were performed. Table 7 shows the burial depths and the
effective dielectric constants of the metallic targets.

As described in section 6.2, the burial depth was estimated based on the time delay
between the reflection by the sand’s surface and the target’s signal. Note that our incident
signal was not really a short impulse. It is therefore natural to expect some level of error in
our estimates. Since we made use of peaks of the signals in estimating the depth, the error
we expect is about the distance between two consecutive peaks, which is equal to half of the
wavelength (2 cm).

From Tables 6 and 7 we can see that the burial depth was accurately estimated in most
cases, with the errors not exceeding 2 cm. There are two cases (#4, 7) in which the errors
were about 4 cm. These targets were buried at rather deep depths of about the limiting
depth (10 cm) for antipersonnel land mines. This made the estimate less accurate because
of possible uncertainty in measuring the refractive index of the sand. Also, there might be
an error in recording the exact burial depths during the data acquisition for deeply buried
targets.

The estimates of the refractive indices of non-metallic targets with refractive indices larger
than that of the sand (water and wet wood) are quite accurate with the average error of
about 9.7% for Test 1 and 15.2% for Test 2. Note that the error in our direct measurement
of the refractive index of the wet wood was 10%. For water, we were unable to directly
measure its refractive index at the used quite high frequency of the signal, which was about
7.5 GHz. Therefore, we have made a separate experiment: we have placed that bottle of
water in air, measured the backscattering data and then reconstructed the refractive index
using the globally convergent method as in [3, 4]. The result of n = 4.88 matches well the
experimentally measured refractive index of 4.84 at high frequencies in Table 3.1 of [41].
Moreover, by comparing our computed n for water in Table 6 with this reference value
n = 4.88, we can see the consistency of our results.

Targets with smaller refractive indices than that of the sand are of interest since they are
models of plastic land mines and IEDs. We have observed that we can image these targets
only if their burial depths do not exceed 5 cm. The average error shown in Table 6 for these
weak targets is about 21.6% for Test 1 and 13% for Test 2. The average measurement error
of n for weak targets was about 5.4%.

In our experiments, we have missed some weak targets (not shown here), which had more
than 5 cm burial depths. For these weak targets, we have observed that their signals were
blended by the reflection from the sand’s surface. Therefore, we could not detect any target’s
signal out of them. Note that, since our current algorithm uses the Laplace transform, it is
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Table 5: Description of the test data sets. Seven of them consist of two targets each (5, 6,
16, 17, 20, 23, 25). Two targets can be considered as heterogeneous (11, 12).

Object Blind/ Description of target Material
# Non-blind
1 Non-blind A metallic cylinder Metal
2 Non-blind A metallic ball Metal
3 Non-blind A bottle filled with clear water Water
4 Non-blind A wet wooden block Wet wood
5 Non-blind Two metallic blocks at 6 cm separation Metal/Metal
6 Non-blind A metallic cylinder and a teflon bar Metal/Teflon
7 Non-blind A metallic block Metal
8 Non-blind An empty bottle Air
9 Non-blind A bottle filled with teflon bars Teflon
10 Blind A ceramic mug Ceramic
11 Blind A wooden doll filled with metallic screws Wood/Metal

(heterogeneous, diffuse scattering)
12 Blind A geode (heterogeneous): Rock

two spherical layers and air inside
13 Blind A piece of rock Rock
14 Blind A plastic bottle filled with coffee grounds Coffee grounds
15 Blind A ceramic mug Ceramic
16 Blind A cylinder and a block at 3 cm separation Metal/Metal
17 Blind An aluminum can and a block Metal/Metal
18 Blind A wooden doll with a metallic block inside Wood/Metal

(heterogeneous)
19 Blind A bottle of water Water
20 Blind A metallic block and a rock Metal/rock
21 Blind A steel mug Metal
22 Blind A wet wooden block Wet wood
23 Blind A wet wooden block and an empty bottle Wet wood/air
24 Blind A wet wooden block Wet wood
25 Non-blind Two metallic blocks at 1 cm separation Metal/Metal
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Table 6: Result of the globally convergent algorithm: the refractive indices n =
√
ǫ and

the burial depths of non-metallic targets. Object #11 is a heterogeneous target with diffuse
scattering, see below. Object #12 is a heterogeneous one with outer and inner layers, the
computed n is compared with the average measured n = 1.28. Object #23 consists of two
targets: wet wood and empty bottle filled with air. “Comp.” stands for “Computed”. The
average error of strong targets is 8.5% for Test 1 and 14.7% for Test 2. The average error
of weak targets is 21.6% for Test 1 and 13% for Test 2.

Object Material Comp. Exact Comp. Comp. Measured
# depth depth n, Test 1 n, Test 2 n

3 Water 3.6 cm 4.0 cm 4.7 4.9 4.88
4 Wet wood 5.5 cm 9.8 cm 4.4 4.5 4.02
8 Air 2.8 cm 3.0 cm 1.0 0.98 1.0
9 Teflon 2.9 cm 2.5 cm 1.0 1.18 1.0
10 Ceramic 4.0 cm 5.0 cm 1.0 1.23 1.39
11 Wood with 4.6 cm 4.0 cm 1.0 1.46 1.89 (wood)

metal screws N/A: diffuse scattering
12 Geode 3.1 cm 2.5 cm 1.0 1.52 1.31 (outer)

(two layers) 1.25 (inner)
1.28 (average)

13 Rock 2.0 cm 2.3 cm 1.0 1.34 1.34
14 Coffee grounds 2.0 cm 2.5 cm 1.0 1.46 1.11
15 Ceramic 2.6 cm 2.5 cm 1.0 1.51 1.39
19 Water 7.5 cm 9.5 cm 4.5 5.2 4.88
22 Wet wood 2.9 cm 3.0 cm 4.8 5.3 4.02
23 Wet wood 5.7 cm 7.5 cm 4.0 4.1 4.02

Empty bottle (air) missed 7.5 cm missed missed 1.0
24 Wet wood 5.1 cm 6.8 cm 3.67 3.0 4.02
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Table 7: Result of the globally convergent algorithm: the estimated effective dielectric con-
stants and the burial depths of metallic targets. Object #18 is a heterogeneous one: a wooden
dool with a metallic block inside. Object #20 consists of two targets: a metallic block and
a rock. Measured n (rock) = 1.34. Objects #5, 16, 17 consist of two metallic targets. Ob-
ject #25 consists of two metallic targets with 1 cm distance between their surfaces: super
resolution, see Figure 5.4.

Object Material Computed Exact Computed ǫ Computed ǫ

# depth depth Test 1 Test 2
1 Metal 2.9 cm 4.0 cm 29.9 46.4
2 Metal 2.9 cm 3.0 cm 24.5 31.0
5 Metal 3.0 cm 3.0 cm 23.4 32.4

Metal 3.6 cm 3.0 cm 30.5 41.2
6 Metal 2.8 cm 8.5 cm 27.8 37.5

Teflon missed 8.5 cm
7 Metal 9.9 cm 14.0 cm 47.4 65.8
16 Metal 2.5 cm 4.5 cm 19.9 24

Metal 3.7 cm 4.5 cm 33.7 47.5
17 Metal 2.0 cm 3.8 cm 30.0 51.1

Metal 2.7 cm 3.8 cm 54.8 93.5
18 Wood, metal block inside 7.1 cm 8.5 cm 18.3 19.9
20 Metal 6.8 cm 8.5 cm 30.0 48.1

Rock missed 8.5 cm
21 Metal 5.1 cm 7.5 cm 23.1 28.2
25 Metal 3.8 cm 4.0 cm 70.0 99.8

Metal 4.0 cm 4.0 cm 40.8 56.5
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applicable only when we can detect and extract targets’ signals and remove the reflection
by the sand’s surface as well as noise at earlier times. Otherwise, they will dominate the
targets’ signals after the Laplace transform, see Figure 17. Thus, these missed cases were
not due to the inversion algorithm.

The signals of the metallic targets were strong compared to the sand’s signal. Therefore
they were quite easy to detect. We recall that metallic targets can be approximated by
dielectric ones with large appearing dielectric constants. The estimated effective dielectric
constants of our metallic test targets are between 20 and 100.

In our tests, there were four cases (#5, 16, 17, 25 in Table 7) in which there were two
metallic targets simultaneously. In each case we have accurately imaged both targets.

There were also three data sets (#23 in Table 6 and #6, 20 in Table 7) in which one
strong target and one weak target were buried simultaneously. In all these three cases we
have accurately imaged the stronger target. However, we missed the weaker ones. The
reason why we missed the weak targets was due to the fact that their burial depths were
larger than 5 cm, which is our limiting depth for weak targets.

Also of interest are three cases of heterogeneous targets (#11, 12 in Table 6 and #18 in
Table 7), since explosive devices are heterogeneous sometimes. We successfully estimated
the average refractive index of the geode, which consists of two different layers, in data set
#12. For the wooden doll containing a metallic block inside in data set #18 the computed
dielectric constant is larger than that of the wood but smaller than other metallic targets. It
is smaller because the wood covers the metal. Target #11 was a wooden doll with randomly
distributed metal screws inside. In this case we observed a weak signal, rather than a strong
one from the metal. In fact, we observed a well known phenomenon of diffuse scattering,
which was described in [62]. This can be explained since the metal screws were randomly
oriented and represent a conducting very rough surface to the incident microwave pulse.
Multiple scattering combined with the penetration of the microwaves into the gaps between
the screws strongly attenuates the incident wave and little scatters back to contribute to a
measurable signal.

6.5 Some images

In this subsection we present samples of images of buried objects obtained via the application
of our two-stage numerical procedure. The first stage is the globally convergent method and
the second stage is the adaptivity. Just as above (section 5.12), this procedure accurately
reconstructs all three components of targets: refractive indices, locations and shapes. The
choice of parameters and calibration procedure here are the same as in subsection 5.11. Left
panels of Figures 18-21 are images obtained on the first stage and right panels are images
obtained on the second stage. For a better visualization, we zoom images via showing
reconstruction results in the box 0.4×0.4×0.24.

55



(a) (b)

Figure 18: Reconstruction of a metallic ball (object #2 in Table 5). a) Result of the globally
convergent method (stage 1). b) Result of the adaptivity (stage 2). One can observe that the
shape is reconstructed rather accurately on b).

6.6 Super resolution the first experimental and numerical obser-
vations

In the data set #25, the two metallic blocks were at 1 cm distance, see Figure 21. On
the other hand, the wavelength of our device is about 4 cm. Thus, the super resolution is
achieved, which is of about λ/4, where λ is the wavelength of our incident wave. This is an
unexpected surprise. From a purely angular spectrum argument, the spread of backscatter
angles for a fixed frequency would suggest a resolution of half a wavelength. There has been
previous evidence reported that using a nonlinear inverse scattering algorithm for which
strong or multiple scattering occurs, that some degree of super resolution (i.e., beyond the
ideal diffraction limit of half a wavelength) can occur, see, e.g., [63]. Still, this was done in
[63] only for computationally simulated data.

However, we are the first ones who has observed this phenomenon experimentally and,
at the same time, reconstructed the image numerically.
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(a) (b)

Figure 19: Reconstruction of a plastic bottle filled with a clean water (object #3 in Table
5). a) Result of the globally convergent method (stage 1). b) Result of the adaptivity (stage
2). Since the target was quite high (about 18 cm tall), then the incident signal was rather
weak at the top and bottom of that bottle. This made it hard to reconstruct the shape more
accurately. Still, one can observe a stretch in the vertical direction.
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(a) (b)

Figure 20: Reconstruction of a ceramic mug (object #10 in Table 5). a) a) Result of the
globally convergent method (stage 1). b) Result of the adaptivity (stage 2). One can observe
that the shape is reconstructed rather accurately on b).

7 Joint ResearchWith Engineers of US Army Research

Laboratory and Technology Transfer

Publications [17, 18, 19] are joint ones with Doctors Anders Sullivan and Lam Nguyen,
engineers of RF Signal Processing and Modeling Branch of Sensors and Electron Devices
Directorate of US Army Research Laboratory (ARL). We have obtained the experimental
data collected in US Army Research Laboratory (ARL). The data were kindly delivered to
us by Drs. Anders Sullivan and Lam Nguyen. These data were collected by the forward
looking radar of ARL [59]. The goal of this radar is to detect and possibly identify shallow
explosive-like targets, which look like explosives, including IEDs. Shallow targets can either
lie on the ground or a few centimeters below the ground. Our goal was to image ratios R,

R =
εr (target)

εr (background)
, (89)

using our globally convergent numerical method. If the dielectric constant of the background
is known, then the dielectric constant of the target can be calculated from (89), as long as
R is known. These were completely blind data. In other words, we had no idea what kind
of targets were in. The only thing we knew was that a target of interest was located either
above the ground or buried in the ground. In addition, there were many other uncertainties
in these data. A significant difficulty was that targets were hidden in a cluttered background.
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(a) (b)

Figure 21: Super resolution. Reconstruction of two metallic targets (object #25 in Table
5). a) Result of the globally convergent method (stage 1). b) Result of the adaptivity (stage 2).
One can observe that the shapes are reconstructed rather accurately on b). The wavelength
of our signal was λ =4 cm. On the other hand, the distance between surfaces of these two
targets was 1 cm. Therefore, this is a very rare experimental and numerical observation of
the super resolution phenomenon.
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In the paper [19] we have compared performances of two numerical methods on the set
of experimental data or ARL:

1. The 1D version of the globally convergent method of this project.

2. The classical 1D method of the Krein equation, which is known since 1954 [51].

Detailed explanations of the Krein equation method can be found in [36, 46]. It was
demonstrated in [19] that while our method computes the value of R in (89) pretty accu-
rately, the Krein equation method completely fails on the ARL data. Furthermore, the poor
performance of the Krein equation method was explained analytically, see subsection 7.4.

7.1 Technology transfer to ARL

We have created an easy-to-use software which works with the above ARL data. Next, we
have transferred this software to Drs. Sullivan and Nguyen.

7.2 Results of [17, 18]

To image ratios (89), we have applied the 1D version of our globally convergent numerical
method of this project. Next, Drs. Sullivan and Nguyen have compared our results with
those in tables [65, 66] (dielectric constants were not measured in experiments). After these
comparisons, both mathematical and engineering teams were quite happy that computational
results were within tabulated limits, see Table 8. This points towards both the adequacy
and the robustness of our algorithm.

The recovered dielectric constant by itself is not a sufficient information to distinguish one
target from another. The purpose of estimating the dielectric constant is to provide one extra
piece of information about the target. Indeed, up to this point, most of the radar community
relies solely on the intensity of the radar image for doing detection and discrimination of
targets. It is hoped therefore that when the intensity information is coupled with the new
dielectric information, algorithms could then be designed that will ultimately provide better
performance in terms of probability of detection and false alarm rate. As it is clear from
Table 8, some targets will have dielectric values that tend to group together, but even that
is a useful information. For example, if the estimated dielectric value is consistent with a
plastic land mine, then this would be another clue to uncovering the target.

Let x ∈ R be the free variable in the 1D case of this study. In our mathematical model
the ratio R in (89) depends on x, R = R (x) , since we treat R (x) as the unknown coefficient
εr (x) in the 1D analog of equation (1). Let Rcomp (x) be function R (x) computed by our
globally convergent method. Then we define the target/background contrast R as

R =

{
maxRcomp (x) if Rcomp (x) > 1,
minRcomp (x) if Rcomp (x) < 1.
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Table 8: Blindly computed by the globally convergent method dielectric constants for five avail-
able data sets of targets immersed in cluttered backgrounds [17, 18]. “tabulated εr (target)”
means either εr from (89) for metallic targets, or εr from tables [65, 66] for dielectrics, or
εr from [39] for bush. “1” in the second column means that the target was in the air, and
“[3,5]” means that it was buried in the dry sand whose εr (dry sand) ∈ [3, 5] [65].

target R εr (background) computed εr (target) tabulated εr (target)
metal cylinder 4.3 [3, 5] [12.9, 21.4] [10, 30]
metal box 3.8 [3, 5] [11.4, 19] [10, 30]
wood stake 3.8 1 3.8 [2,6]
bush (clutter) 6.4 1 6.4 [3,20]
plastic cylinder 0.28 [3,5] [0.84,1.4] 1.2

CONCLUSION FROM TABLE 8:

Dielectric constants were not measured in these experiments. Therefore, the crucial
conclusion from this table is that all computed values of dielectric constants of targets
are within tabulated limits. This was done for the most challenging case of blind
experimental data for targets immersed in cluttered backgrounds.

7.3 Data pre-processing

To obtain results listed in Table 8, a new data preprocessing procedure was applied in [18, 17].
This was necessary, because the experimental data look very much different from simulated
ones, just as in sections 5,6. So that the pre-processed data would look somewhat similar
with computationally simulated data. The pre-processed data were used as input for the
globally convergent algorithm.

The data processing consisted of the following two stages:
Stage 1. Selection of a single peak out of the entire experimental curve by the following

rule: this should be the earliest peak of the largest amplitude

out of

{
all peaks for a target buried in the ground,

all downwards looking peaks for a target above the ground.

Stage 2. The choice of the calibration factor CF . This was necessary because the
amplitudes of the experimental data were of the order of 104 whereas amplitudes of com-
putationally simulated data were less than 1. We have chosen CF in such a way that the
Laplace transform of the simulated data was rather close to the Laplace transform of the
those selected peaks of experimental data, when those peaks were multiplied by CF. Thus,
we got CF = 10−7 and our pre-processed data were

pre-processed data=10−7 · (data pre-processed on the first stage) . (90)

Remark. The contrast R of a target heavily depends on the calibration factor CF .
Therefore, it is very important to have a single calibration factor for all targets. Otherwise,

61



Stage 2 would be biased. We point out that we did not know R in advance because of the
blind study case.

Figure 22 shows original and pre-processed data.

(a) (b)

Figure 22: Original and pre-processed Army Research Laboratory data. a) A sample of the
original time resolved data data. b) Pre-processed data for all five available targets (super-
imposed). The data pre-processing was done as described in Stages 1 and 2.

7.4 Comparison with the classical Krein equation method [19]

The classical Krein integral equation is

2f(+0)p(z, t) +

z∫

−z

f ′(t− λ)p(z, λ)dλ = −1. (91)

Here z is a free variable, which is connected with the original variable x via z = z (x) , where
z (x) is a one-to-one function. Next, f (t) is the data function which is extended as an odd
function from {t > 0} into {t < 0} . The function p(z, t) depends on z as on a parameter.
So that equation (91) is solved for each z > 0. As soon as the function p(z, t) is found, the
unknown coefficient R (x) can be easily reconstructed.

We took the preprocessed data of the above Stage 1 and have tried to find a calibration
factor CFK for them, in such a way that, similarly with (90), we would have for all five
targets

pre-processed data = f (t) = CFK · (data pre-processed on the first stage) , (92)

see Remark in subsection 7.3. To find the number CFK, we have selected any of above five
targets. We call it calibration target. Then have found a “temporary” CFK(target) in such
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Table 9: Computed values of RK for Case 1. Wood stake is the calibration target. Bold

faced are values of RK which lead to values of εr (target) outside of tabulated intervals.
target RK εr (bckgr) computed εr (target) tabulated εr (target)
metal cylinder 3.25 [3,5] [9.75,16.25] [10,30]
metal box 3.97 [3,5] [11.91,19.85] [10,30]
bush 42.5 1 42.5 [3,20]
plastic cylinder 0.6 [3,5] [1.8,3] 1.2

Table 10: Computed values of RK for Case 2. Plastic cylinder is the calibration target. Bold

faced are values of RK which lead to values of εr (target) outside of tabulated intervals.

target RK εr (bckgr) computed εr (target) tabulated εr (target)
metal cylinder 9.8 [3,5] [29.4,49] [10,30]
metal box 13.9 [3,5] [41.7,69.5] [10,30]
wood stake 17 1 17 [2,6]
bush >>100 1 >>100 [3,20]

a way that the value of R := RK for this target computed via equation (91) would be the
same as the one listed in Table 9. Next, we have multiplied the data for four other targets
by the same number CFK(target) and have solved Krein equation (91) for so pre-processed
data. Next, we have done the same for another target and repeated this five times.

We have found that it is impossible to choose a proper number CFK(target) in such a
way that resulting values of RK would be within tabulated limits for all five targets. More
precisely, for each out of five possible CFK(target) there existed at least one target for
which the value of RK was outside the tabulated limit. Below are three cases illustrating
this conclusion. In the case when metal box was chosen as the calibration target, our
calculations led to the same results as those in Table 6. This is because R (wood stake) =
R (metal box) = 3.8. Also, R (metal cylinder) = 4.3 ≈ 3.8 = R (metal box) . Hence, the
calculation for the case when the metal cylinder was chosen as the calibration target again
led to results, which are similar with those of Table 9.

Case 1. Wood stake is the calibration target. We have obtained CFK (wood stake) =
10−5.

Case 2. Plastic cylinder is the calibration target. We have obtained CFK(plastic cylinder) =
1.8 · 10−5.

Case 3. Bush is the calibration target. We have obtained CFK(bush) = 0.6 · 10−5.
To see how the changes in the calibration factor affect the reconstructed values of R and

RK , we present Figure 23. The visual analysis of these curves shows that the increase of the
calibration factor affects R linearly, and it affects RK exponentially. This explains results of
above Cases 1-3.

We now explain Figure 23 as well as results of tables 9,10,11. To do this, we use (92) to
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Table 11: Computed values of RK for Case 3. Bush is the calibration target. Bold faced

are values of RK which lead to values of εr (target) outside of tabulated intervals.
target RK εr (bckgr) computed εr (target) tabulated εr (target)
metal cylinder 2.0 [3,5] [6,10] [10,30]
metal box 1.16 [3,5] [3.48,5.8] [10,30]
wood stake 3.2 1 3.2 [2,6]
plastic cylinder 0.74 [3,5] [3.22,3.7] 1.2

Figure 23: Dependencies of R and RK from the calibration factor for bush and wood stake
are displayed. In both a),b) “1” on the y−axis for AGCM (the globally convergent method)
corresponds to CF = 10−7 in (90). a) “1” on the y−axis in KIEM (Krein method) corre-
sponds to CFK(bush) = 0.6 ·10−5 (Case 3). b) “1” on the y−axis in KIEM (Krein method)
corresponds to CFK(wood stake) = 10−5 (Case 1).
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present the Krein equation (91) as

p(z, t)− CFK

2

z∫

−z

f
′
(t− τ)p(z, τ )dτ =

1

2
, t ∈ [−z, z], ∀z ∈ [0, T/2]. (93)

In (93) f(t) is the pre-preprocessed data as in Stage 1 and f(+0) = 1 as on Figure 23.

Denote β := z · CFK sup|t|<z

∣∣∣f ′
(t)
∣∣∣ . If β ∈ (0, 1), then one can solve integral equation (93)

via the classical resolvent series. It is clear from this series that the solution p(z, t) changes
almost with an exponential speed when the calibration factor CFK changes.

On the other hand, taking into account the calibration factor CF for the globally con-
vergent method, the function q (x, s) in (18) can be represented as

q (x, s) =
∂

∂s

[
ln (CF · w (x, s))

s2

]
=

2

s2

[
− ln (CF · w (x, s))

s
+
ws (x, s)

ws (x, s)

]
.

Since we work with large values of s > 1, then q (x, s) changes logarithmically with the
change of CF. This is a much slower rate of change than the exponential one of the Krein
equation.

8 Global Convergence via a Carleman Weight Func-

tion

The statement of the CIP3.1 in section 3.1 uses only the Dirichlet boundary condition (19).
However, using the procedure, which is a simple generalization of the data complementing
in (76), it is possible to prove that one can approximately find both Dirichlet and Neumann
boundary conditions for the function q (x, s) on the entire boundary ∂Ω. Thus, by (18), we
should solve the following problem for the function q (x, s)

∆q − 2s2∇q
∞∫

s

∇q (x, τ) dτ + 2s

∣∣∣∣∣∣

∞∫

s

∇q (x, τ ) dτ

∣∣∣∣∣∣

2

= 0, x ∈ Ω, s ≥ s, (94)

q |∂Ω= ψ (x, s) , ∂νq |∂Ω= ϕ (x, s) , s ≥ s. (95)

Since the first work of Beilina and Klibanov [25] on the topic of global convergence, the
approach to the problem (94), (95), which has been pursued so far and which is the focus
of the effort of this project, by the PI is based on the truncation of the integral in (94) at a
high value of the pseudo frequency s := s. In other words, it has been assumed so far that

∞∫

s

q (x, τ ) dτ =

s∫

s

q (x, τ ) dτ + V (x, s) , s ∈ (s, s) .
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Next, the function V (x, s), which is called “the tail function”, and the function q (x, s) were
approximated separately in an iterative procedure. In particular, the first approximation
V1,1 (x) for the function V (x, s) was found via truncation of an asymptotic series with respect
to 1/s, s >> 1 and solution of the resulting Dirichlet boundary value problem (39), (40) for
the Laplace equation.

Unlike the above, it was figured out in the recent work [11] how to work out a globally
convergent numerical method without any truncation of the integrals in (94). Instead, a
significantly new idea is used, Namely, a weighted cost functional is constructed in [11].
The weight is the Carleman Weight Function (CWF), which is involved in the Carleman
estimate for the Laplace operator. Let H be a certain Hilbert space. Given a bounded set
G ⊂ H of an arbitrary size, one can choose a parameter of CWF in such a way that that
functional becomes strictly convex on G. The strict convexity, in turn guarantees the global
convergence of the gradient descent method, i.e. this method can start from any point of G
and still will converge to the exact solution.

Thus, the work [11] represents a new globally convergent numerical method for CIP3.1.
Another new approach to the issue of the global convergence via another CWF was recently
proposed in [12].

Globally strictly convex cost functionals with Carleman Weight Functions in them were
constructed by the PI in his previous publications of 1997 [49, 50]. However, those func-
tionals were constructed in the time domain for CIPs for hyperbolic [49] and parabolic [50]
PDEs. Equation (94), which is in the Laplace transform domain, was not considered in these
references and the problem of tails was not addressed.

8.1 Outline of the new globally convergent numerical method of
[11]

We represent the function q(x, s) as a series with respect to an orthonormal basis of L2(s,∞).
Using this representation, the integral over the infinite interval (s,∞) in (94) can be easily
computed. Let {fn (s)}∞n=0 ⊂ L2 (s (d) ,∞) be an orthonormal basis in L2 (s (d) ,∞) such
that {fn (s)}∞n=0 ⊂ L1 (s (d) ,∞) . As an example, one can consider Laguerre functions [24]

Ln (s) = e−s/2
n∑

k=0

(−1)k Ck
n

sk

k!
, s ∈ (0,∞) , Ck

n =
n!

(n− k)!k!
.

Next, we set fn (s) := Ln (s− s (d)) , s ∈ (s (d) ,∞) . It can be verified that q (x, s) ∈
L2 (s (d) ,∞) , ∀x ∈ Ω. Hence, one can represent the function q (x, s) as

q (x, s) =
∞∑

n=0

qn (x) fn (s) ≈
N−1∑

n=0

qn (x) fn (s) , s ≥ s (d) , (96)

where N is a sufficiently large integer which should be chosen in numerical experiments.
Consider the vector of coefficients in the truncated series (96) Q (x) = (q0, ..., qN−1) (x) ∈ RN .
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Substituting the truncated series (96) in (94), we obtain

N−1∑

n=0

∆qn(x)fn(s)− 2s2
N−1∑

m=0

N−1∑

n=0

∇qm(x)∇qn(x)fm(s)
∞∫

s

fn(τ )dτ

+ 2s

N−1∑

m=0

N−1∑

n=0

∇qm(x)∇qn(x)
∞∫

s

fm(τ )dτ

∞∫

s

fn(τ)dτ = 0.

(97)

To be precise, one should have “≈” instead of “=” in (97) due to the truncation (13).
Multiplying both sides of (97) by fk(s), integrating over (s (d) ,∞) and keeping in mind the
fact that {fn(s)}∞n=0 is an orthonormal basis in L2(s,∞), we obtain the following system of
coupled nonlinear elliptic equations:

∆qk(x) +

N−1∑

m=0

N−1∑

n=0

Fkmn∇qm(x)∇qn(x) = 0, k = 0, . . . , N − 1, x ∈ Ω, (98)

where the numbers Fkmn, k,m, n ∈ {0, . . . , N − 1}, are given by

Fkmn =

∞∫

s(d)

2sfk(s)
( ∞∫

s

fm(τ)dτ

∞∫

s

fn(τ )dτ
)
ds−

∞∫

s(d)

2s2fk(s)fm(s)
( ∞∫

s

fn(τ )dτ
)
ds.

The boundary conditions for qn are obtained by substituting again the truncated series
(96) into (95). For the convenience of the following analysis, we rewrite system (98) together
with the boundary conditions as the following boundary value problem with over-determined
boundary conditions. Note that we have both Dirichlet and Neumann boundary conditions

∆Q + F (∇Q) = 0, (99)

Q |∂Ω= Φ(x) , ∂nQ |∂Ω= Ψ (x) , (100)

where the boundary vector functions Φ (x) ,Ψ (x) ∈ RN are computed from the functions
ϕ (x, s) , ψ (x, s) and F : R3N → RN , F = (F0, ..., FN−1) ∈ C∞

(
R3N

)
with

Fk(∇Q) =
N−1∑

m=0

N−1∑

n=0

Fkmn∇qm(x)∇qn(x), k = 0, . . . , N − 1.

If we can find an approximate solution of the problem (99)–(100), then we can find an
approximation for the function q via the truncated series (96). Therefore, we focus below on
the method of approximating the vector function Q (x) .

Let F̃ (x) =
(
F̃0, ..., F̃N−1

)
(x) , x ∈ Ω, be a vector function and H be a Hilbert space.

Below any statement that F̃ ∈ H means that every component of the vector F̃ belongs to

H . The norm
∥∥∥F̃
∥∥∥
H
means

∥∥∥F̃
∥∥∥
H
=
(N−1∑

n=0

∥∥∥F̃n

∥∥∥
2

H

)1/2
.
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Our ultimate goal is to apply this method to the inversion of above experimental data
of [2, 3, 4, 5]. Thus, just as in these references, below Ω is chosen to be a rectangular
parallelepiped. Without loss of generality, it is convenient to assume that

Ω = {x = (x1, x2, x3) : (x1, x2) ∈ (−A,A) , x3 ∈ (0, 1/2)} ,

where A > 0 is a number. Thus, ∂Ω = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 = {x ∈ ∂Ω|x3 = 0} , Γ2 = {x ∈ ∂Ω|x3 = 1/2} , Γ3 = Ω� (Γ1 ∪ Γ2) .

As in [2, 3, 4, 5], Γ1 is considered as the backscattering side, where the data are measured. Al-
though measurements were not performed on Γ2∪Γ3, it was demonstrated in these references
that assigning

w(x, s) |Γ2∪Γ3
:= w0(x, s) |Γ2∪Γ3

(101)

does not affect the accuracy of the reconstruction via the technique of [1]. Thus, we now
relax conditions (100), assuming that the normal derivative is given only on Γ1, the Dirichlet
condition is given on Γ1 ∪ Γ3 and no boundary condition is given on Γ2,

Q |Γ1∪Γ3
= Φ(x) , ∂nQ |Γ1

= Ψ (x) . (102)

Let us introduce a CWF for the Laplace operator which is suitable for this domain Ω and
for boundary conditions (102). Let a, ξ ∈ (0, 1/2) be two arbitrary numbers. Let λ, ν > 1
be two large parameters which we will choose later. Then the CWF has the form

ϕλ,ν (x3) = eλ(x3+ξ)−ν

e−λ(a+ξ)−ν

. (103)

Hence,
lim
λ→∞

ϕλ,ν (1/2) = 0.

Lemma 9.1 establishes a Carleman estimate for the operator ∆ in the domain Ω with the
weight function (103).

Lemma 9.1. There exist sufficiently large numbers λ0 = λ0 (Ω) > 1, ν0 = ν0 (Ω, a, ξ) > 1
depending only on the listed parameters such that for an arbitrary function u ∈ H2 (Ω)
satisfying u |Γ3

= 0 the following Carleman estimate holds for all λ ≥ λ0 and with a constant
C = C (Ω) > 0 depending only on the domain Ω

∫

Ω

(∆u)2 ϕ2
λ,ν0

dx+ C
(
‖u |Γ1

‖2H1(Γ1)
+ ‖∂nu |Γ1

‖2L2(Γ1)

)
e2λξ

−ν0

≥ C

∫

Ω

(
λ |∇u|2 + λ3u2

)
ϕ2
λ,ν0dx− Cϕ2

λ,ν0 (1/2)

∫

Γ2

(
|∇u|2 + u2

)
dx2dx3.

Below C = C (Ω) > 0 denotes different constants depending only on the domain Ω. Let
R > 0 be an arbitrary number. Define the set G of vector functions Q as

G = G (R,Φ,Ψ) =

{
Q = (q0, ..., qN−1)

T ∈ H3 (Ω) : ‖Q‖H3(Ω) < R,

Q |Γ1∪Γ3
= Φ(x) , ∂nQ |Γ1

= Ψ (x) .
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Then G is an open set in H3 (Ω) . Also, Embedding Theorem implies that

G ⊂ C1
(
Ω
)
, ‖Q‖C1(Ω) < CR, ∀Q ∈ G.

Let ν0 = (Ω, a, ξ) > 1 be the number in Lemma 9.1. Denote Ωa = Ω∩{x3 < a} .We seek the
solution Q of the problem (99), (102) on the set G via minimizing the following Tikhonov-like
cost functional with the CWF ϕ2

λ,ν0
and with the regularization parameter α ∈ (0, 1)

Jλ,α (Q) =
1

2

∫

Ω

[∆Q + F (∇Q)]2 ϕ2
λ,ν0

dx+
α

2
‖Q‖2H3(Ω) , Q ∈ G (R,Φ,Ψ) .

Theorem 9.2. There exists a sufficiently large number λ1 = λ1 (Ω, G, F ) > 1 depending
only on Ω, G, F such that if λ ≥ λ1 and α ∈

[
ϕ2
λ,ν0

(1/2) , 1
)
, then the functional Jλ,α (Q)

is strictly convex on the set G, i.e., there exists a constant C1 = C1 (Ω, G, F ) > 0 depending
only on Ω, G, F such that for all Q1, Q2 ∈ G

Jλ,α (Q2)− Jλ,α (Q1)− J ′
λ,α (Q1) (Q2 −Q1)

≥ C1 ‖Q2 −Q1‖2H1(Ωa)
+
α

2
‖Q2 −Q1‖2H3(Ω) ,

where J ′
λ,α (Q1) is the Fréchet derivative of the functional Jλ,α at the point Q1.

8.2 Global convergence of the gradient descent method

It is well-known that the gradient descent method is globally convergent for functionals
which are strictly convex on the entire space. However, the functional Jλ,α is strictly convex
only on the bounded set G (R,Φ,Ψ). Therefore, we need to prove the global convergence
of this method on this set. Suppose that a minimizer Qmin of Jλ,α exists on G (R,Φ,Ψ).
In the regularization theory Qmin is called regularized solution of the problem (99), (102)
[1]. Theorem 9.2 guarantees that such a minimizer is unique. First, we estimate in this
section the distance between regularized and exact solutions, depending on the level of error
in the data. Next, we establish that Theorem 9.2 implies that the gradient descent method
of the minimization of the functional Jλ,α converges to Qmin if starting at any point of the
set G (R/4,Φ,Ψ), i.e., it converges globally. In addition, we estimate the distance between
points of the minimizing sequence of the gradient descent method and the exact solution of
the problem. In principle, global convergence of other gradient methods for the functional
Jλ,α can also be proved. However, we are not doing this for brevity.

Following one of concepts of Tikhonov for ill-posed problems (see, e.g., section 1.4 in [1]),
we assume that there exist noiseless boundary data Φ∗ (x) and Ψ∗ (x) which correspond to
the exact solution Q∗ of the problem (99), (102). Also, we assume that functions Φ (x) and
Ψ (x) at the part Γ1 of the boundary contain an error of the level δ,

‖Φ− Φ∗‖H1(Γ1)
≤ δ, ‖Ψ−Ψ∗‖L2(Γ1)

≤ δ. (104)
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On the other hand, we do not assume any error in the function Φ at Γ2 ∪ Γ3, see a heuristic
condition (101), which was justified numerically in [2, 3, 4, 5]. Theorem 9.3 estimates
the distance between Qmin and Q∗ in the norm of H1 (Ωa) , which might be sufficient for
computations. Note that while in Theorem 9.2 we have compared functions Q1 and Q2

satisfying the same boundary conditions, functions Qmin and Q∗ in Theorem 9.3 satisfy
different boundary conditions, because of the error in the data.

Theorem 9.3. Assume that conditions of Theorem 9.2 hold and λ ≥ λ1. In addition,
assume that conditions (104) are satisfied and also Φ |Γ3

= Φ∗ |Γ3
. Suppose that there exists an

exact solution Q∗ of the problem (99), (102) and Q∗ ∈ G (R,Φ∗,Ψ∗) . In addition, assume
that there exists a minimizer Qmin ∈ G (R,Φ,Ψ) of the functional Jλ,α. Let the number
δ0 = δ0 (Ω, G, F, a, ξ) ∈ (0, 1) be so small that

δ
−ξ−ν0/2
0 > λ1.

Let δ ∈ (0, δ0) . Choose the regularization parameter α as α = α (δ) = δ2γ, where

2γ =
ξν0

2 (a + ξ)ν0

[
1− ξν0

(a+ ξ)ν0

]
∈
(
0,

1

2

)
.

Then α ∈
(
ϕ2
λ,ν0

(1/2) , 1
)
(as in Theorem 9.2) and

‖Q∗ −Qmin‖H1(Ωa)
≤ C1δ

γ , ∀δ ∈ (0, δ0) .

We now formulate the gradient descent method with the constant step size β for the
problem of the minimization of the functional Jλ,α. For brevity we do not indicate the
dependence of functions Qn on parameters λ, α, β. Let Q1 ∈ G (R/4,Φ,Ψ) be an arbitrary
point of the set G (R/4,Φ,Ψ). Consider the sequence {Qn}∞n=1 of the gradient descent
method,

Qn+1 = Qn − βJ ′
λ,α (Qn) , n = 1, 2, ... (105)

Theorem 9.4 establishes the global convergence of the sequence (105) on the set G (R,Φ,Ψ) .
In addition, it estimates the distances between points of this sequence and the exact solution,
depending on the level δ of the noise in the data in (104).

Theorem 9.4. Choose parameters λ1, ν0, α as in Theorem 9.2 and let λ ≥ λ1. As-
sume that the functional Jλ,α achieves its minimal value on the set G (R,Φ,Ψ) at a point
Qmin ∈ G (R/4,Φ,Ψ). Consider the sequence (105), in which the starting point Q1 is an
arbitrary point of the set G (R/4,Φ,Ψ). Then there exists a sufficiently small number
β = β (λ, α,G (R,Φ,Ψ)) ∈ (0, 1) and a number θ = θ (β) ∈ (0, 1) , both dependent only
on the listed parameters, such that the sequence (105) converges to the point Qmin,

‖Qn+1 −Qmin‖H3(Ω) ≤ θn ‖Q1 −Qmin‖H3(Ω) , n = 1, 2, ...

In addition, assume that there exists an exact solution Q∗ ∈ G (R/5,Φ∗,Ψ∗) of the problem
(14), (45) and that all conditions of Theorem 9.3 hold. Then for all δ ∈ (0, δ0) the following
estimate holds

‖Qn+1 −Q∗‖H1(Ωa)
≤ θn ‖Q1 −Qmin‖H3(Ω) + C1δ

γ , n = 1, 2, ..
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8.3 Numerical examples

In this subsection we present a limited testing of the above algorithm for some numerically
simulated data. We also compare its performance with the above locally convergent method
alone using the coefficient of the homogeneous medium as the first guess. Numerical results
for experimental data in both 1-d and 3-d cases are under consideration and will be reported
in future work.
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Figure 24: Reconstruction of the coefficient of Example 1. (a) Result of Steps 1 and 2, (b)
Result of Step 3, (c) Result of Step 2 starting from the homogeneous medium as the first
guess, (d) Result of Step 3 applied to the result of (c).

Since our target application is in imaging of an abnormal object placed in a homoge-
neous medium, we mainly test the proposed algorithm with a discontinuous coefficient. The
locations of the discontinuities represent the location of the target. It is hard to obtain
accurate reconstructions at locations far away from the measurement point. However, this
is not a serious restriction from the practical standpoint. Indeed, our experience of working
with 3-d time resolved backscattering experimental data [2, 3, 4, 5] tells us that, using the
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so-called data propagation procedure in data pre-processing, we can approximate quite well
both the distance from the measurement point to the target and the Dirichlet and Neumann
backscattering data near the target. Thus, we assume below that the target is close to the
measurement point.

In the following examples, the parameters were chosen as follows: The pseudo frequencies
were s ∈ [4, 15] with the integration step size in (97) ∆s = 0.05. The number of Laguerre’s
functions was N = 11. The coefficients λ in the CWF was λ = 3. The regularization
parameter α = 0.001 and the truncation value ǫ = 0.2.
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Figure 25: Reconstruction of the coefficient of Example 2. (a) Result of Steps 1 and 2, (b)
Result of Step 3.

Example 1. Consider a piecewise constant coefficient given by c(x) = 1 + 3χ[0.03, 0.1],
where χ is the characteristic function. Figure 24 (a) compares the computed coefficient
values of Steps 1 and 2 with the exact one and Figure 24 (b) depicts the result of Step 3.
To compare with the performance of the above locally convergent method alone, we plot in
Figure 24 (c), (d) the results of Steps 2 and 3, respectively, starting from the homogeneous
medium as the initial guess. We can see that our hybrid algorithm provided accurate results,
whereas the locally convergent method alone failed.
Example 2. In this example, we consider another piecewise constant coefficient with a
larger jump c(x) = 1+14χ[0.03, 0.1]. The results of Steps 1 - 3 are shown in Figure 25. Even
though the jump of the coefficient is high in this case, we still can see the good accuracy of
the reconstruction using our hybrid algorithm.

Example 3. Consider the exact coefficient c(x) = 1 − 0.5χ[0.03, 0.15]. This coefficient
mimics the case the case when the dielectric constant of an explosive is less than the one of
a homogeneous background. Figure 26 shows the reconstruction results of Steps 1 - 3 of the
algorithm. Again, we obtained an accurate reconstruction.
Example 4. Finally, we consider a continuous coefficient given by c(x) = 1+3e−(x−0.1)2/(0.04)2 .
The results are shown in Figure 27. Comparing Figure 27 (a) with Figure 27 (c), one can see
that the combination of Step 1 and Step 2 provided much better result than Step 2 starting
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Figure 26: Reconstruction of the coefficient of Example 3. (a) Result of Steps 1 and 2, (b)
Result of Step 3.

from the homogeneous medium as the first guess. However, results of Step 3 of both cases
are accurate.

From Figure 24 (d) and Figure 27 (d) we see that the above locally convergent method,
taking alone, is unstable in the sense that, depending on the type of the target, it provides
either bad or good quality images. Meanwhile, the proposed hybrid algorithm provides
accurate results in all four examples.
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Figure 27: Reconstruction of the coefficient of Example 4. (a) Result of Steps 1 and 2, (b)
Result of Step 3, (c) Result of Step 2 starting from the homogeneous medium as the first
guess, (d) Result of Step 3 applied to the result of (c).
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9 The First Solution of a Long Standing Problem [8,

9, 10]

In the paper [8] the PI has solved, for the first time, a long standing problem posed in 1977
by French mathematicians Chadan and Sabatier in their famous book [38]. However, only
after the paper [8] was published, the PI has realized that the result of this paper indeed
represents the first solution of that problem. Thus, the PI has published a short paper [9],
where he has pointed out to this fact. A generalization of the result of [8] to the case of the
acoustics equation in R3 was published in the paper of the PI [10].

When considering Coefficient Inverse Problems in the frequency domain, it was assumed
in all previous publications that both the modulus and the phase of the complex valued
function representing the wave field is known on a certain set, see, e.g. [60, 61] for global
uniqueness results and reconstruction methods. However, in quantum inverse scattering,
which is the main interest of the book [38], only the differential cross-section is measured.
This means that only the modulus of the scattering wave is measured in quantum inverse
scattering. On the other hand, the entire theory of the quantum inverse scattering uses the
assumption that both the modulus and the phase of the scattering complex valued wave field
are measured. This caused the authors of the book [38] to pose in 1977 in chapter 10 the
question about the uniqueness of the inverse scattering problem in the case when only the
modulus of the scattering complex valued wave field is measured outside of the scatterer. As
it was mentioned above, this question was, for the first time, addressed by the PI in 2014 in
[8]. Unlike the current 3-d case, in the past, uniqueness of the phaseless Coefficient Inverse
Problem was proven only for the case of the 1-d Schrödinger equation by Klibanov and Sacks
in 1992 [53].

Inverse problems without the phase information are well known in optics, since it is often
impossible to measure the phase of the optical signal, unlike its amplitude. In optics, such a
problem is usually formulated as the problem about the recovery of a compactly supported
complex valued function from the modulus of its Fourier transform. The latter is called the
“phase retrieval problem” [43, 44]. Uniqueness theorems for the phase retrieval problem can
be found in [52, 54, 55].

9.1 The first solution of the Chadan-Sabatier problem

Below Cs+α are Hölder spaces, where s ≥ 0 is an integer and α ∈ (0, 1) . Let Ω, G ⊂ R3 be
two bounded domains, Ω ⊂ G. For an arbitrary point y ∈ R3 and for an arbitrary number
ω ∈ (0, 1) denote Bω (y) = {x : |x− y| < ω} and Pω (y) = R3�Bω (y) . For any two sets
M,N ⊂ R3 let dist (M,N) be the Hausdorff distance between them. Let G1 ⊂ R3 be a
convex bounded domain with its boundary S ∈ C1. Let ε ∈ (0, 1) be a number. We assume
that Ω ⊂ G1 ⊂ G, dist (S, ∂G) > 2ε and dist (S, ∂Ω) > 2ε. Hence,

dist (∂Bε (y) , ∂Ω) > ε, ∀y ∈ S, (106)

dist (∂Bε (y) , ∂G) > ε, ∀y ∈ S. (107)
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Below either m = 2 or m = 4, and we will specify this later. We impose the following
conditions on the potential q (x)

q (x) ∈ Cm
(
R3
)
, q (x) = 0 for x ∈ R3�G, (108)

q (x) ≥ 0. (109)

Let x0 = (x0,1, x0,2, x0,3) be the source position. Consider the following problem

∆xu+ k2u− q (x) u = −δ (x− x0) , x ∈ R3, (110)

3∑

j=1

xj − xj,0
|x− x0|

∂xj
u (x, x0, k)− iku (x, x0, k) = o (1) , |x| → ∞. (111)

Here the radiation condition (111) is valid for every fixed source position x0. To establish
existence and uniqueness of the solution of the problem (110)-(111), we refer to Theorem 6 of
Chapter 9 of the book [68] as well as to Theorem 3.3 of the paper [67]. As to the smoothness
of the solution of the problem (110)-(111), we refer to Theorem 6.17 of the book [45]. Thus,
combining these results, we obtain that for each pair (k, x0) ∈ R× R3 there exists unique
solution u (x, x0, k) of the problem (110), (111) such that

u (x, x0, k) = u0 (x, x0, k) + us (x, x0, k) , (112)

u0 =
exp (ik |x− x0|)

4π |x− x0|
, us ∈ Cm+1+α (Pω (x0)) , ∀α, ω ∈ (0, 1) . (113)

In (112), (113) u0 (x, x0, k) is the incident spherical wave and us (x, x0, k) is the scattered
wave.

Phaseless Inverse Problem 1 (PIP1). Let m = 2 in (108). Suppose that the function
q (x) satisfying (108), (109) is unknown for x ∈ Ω and known for x ∈ R3�Ω. Also, assume
that the following function f1 (x, x0, k) is known

f1 (x, x0, k) = |u (x, x0, k)| , ∀x0 ∈ S, ∀x ∈ Bε (x0) , x 6= x0, ∀k ∈ (a, b) ,

where (a, b) ⊂ R is an arbitrary interval. Determine the function q (x) for x ∈ Ω.
We now outline the main difficulty, which did not allow one to prove uniqueness results for

phaseless 3-d inverse scattering problems so far. As an example, consider IP1. Analogous
difficulties take place all other phaseless Coefficient Inverse Problems formulated in this
report. In PIP1 one should work with a complex valued function r (k) , k ∈ R such that its
modulus |r (k)| is known for all k ∈ (a, b). The function r (k) admits the analytic continuation
from the real line R in the half-plane {k ∈ C : Im k > −γ} for a certain number γ > 0. Since
|r (k)|2 = r (k) r (k) , then the function |r (k)|2 is analytic for k ∈ R as the function of the
real variable k. Here r (k) is the complex conjugate of r (k) . Hence, the modulus |r (k)| is
known for all k ∈ R. Denote C+ = {k ∈ C : Im k ≥ 0} . Proposition 4.2 of [54] implies that
if r (k) would not have zeros in C+, then this function would be uniquely reconstructed for
all k ∈ R from the values of |r (k)| for k ∈ R. However, the main difficulty is to properly
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account for zeros of r (k) in the upper half-plane C+�R. Indeed, let z1, ..., zn ∈ C+�R be
some of such zeros of r (k) . Consider the function r̂ (k) defined as

r̂ (k) =

(
n∏

j=1

k − zj
k − zj

)
r (k) .

Hence, |r̂ (k)| = |r (k)| , ∀k ∈ R. Furthermore, the function r̂ (k) is analytic in the half-plane
{k ∈ C : Im k > −γ} . Therefore, in order to prove uniqueness, one needs to figure out

how to combine the knowledge of |r (k)| for k ∈ R with a linkage between the function r (k)
and the originating differential operator.

This difficulty was handled in [53] in the 1-d case, using the fact that the function r (k)
depends only on one variable k in this case. Unlike [53], the function r (x, x0, k) = u (x, x0, k)
depends on x, x0, k in the 3-d case. Hence, the above zeros depend now on both x and x0,
i.e. zj = zj (x, x0) . Thus, compared with the 1-d problem, the main difficulty of the 3-d
case is that it is necessary to figure out how to take into account the dependence of zeros
zj (x, x0) from x and x0. To do this, we essentially use here properties of the solution of the
Cauchy problem for an associated hyperbolic PDE

vtt = ∆v − q (x) v, (x, t) ∈ R3 × (0,∞) , (114)

v (x, 0) = 0, vt (x, 0) = δ (x− x0) . (115)

Indeed, it follows from Lemma 6 of Chapter 10 of the book [68] as well as to Remark 3 after
that lemma that the function u is the Fourier transform of the function v,

u (x, x0, k) =

∞∫

0

v (x, x0, t) e
iktdt, ∀x, x0 ∈ R3, x 6= x0, ∀k ∈ R. (116)

Theorem 9.1. Consider PIP1. Let two potentials q1 (x) and q2 (x) satisfying condi-
tions (108), (109) be such that q1 (x) = q2 (x) = q (x) for x ∈ R3�Ω. Let u1 (x, x0, k)
and u2 (x, x0, k) be corresponding solutions of the problem (110)-(111) satisfying conditions
(112), (113). Assume that

|u1 (x, x0, k)| = |u2 (x, x0, k)| , ∀x0 ∈ S, ∀x ∈ Bε (x0) , x 6= x0, ∀k ∈ (a, b) . (117)

Then q1 (x) ≡ q2 (x) .
In PIP1 the modulus of the total wave field u = u0 + us is known on a certain set, see

(112), (113) for u0 and us. We now consider the case when only the modulus of the scattered
wave is known.

Phaseless Inverse Problem 2 (PIP2). Let m = 2 in (108). Suppose that the function
q (x) satisfying (108), (109) is unknown for x ∈ Ω and known for x ∈ R3�Ω. Also, assume
that the following function f2 (x, x0, k) is known

f2 (x, x0, k) = |us (x, x0, k)| , ∀x0 ∈ S, ∀x ∈ Bε (x0) , x 6= x0, ∀k ∈ (a, b) .
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Determine the function q (x) for x ∈ Ω.
Theorem 9.2. Consider IP2. Assume that all conditions of Theorem 5.1 hold, except

that (117) is replaced with

|us,1 (x, x0, k)| = |us,2 (x, x0, k)| , ∀x0 ∈ S, ∀x ∈ Bε (x0) , x 6= x0, ∀k ∈ (a, b) , (118)

where us,j = uj − u0, j = 1, 2. In addition, assume that q (x) 6= 0, ∀x ∈ S. Then q1 (x) ≡
q2 (x) .

Theorems 5.1 and 5.2 are formulated only for the over-determined data. Indeed, in
both PIP1 and PIP2 the number of free variables in the data exceeds the number of free
variables in the unknown coefficient. The reason of this is that even if the phase is known,
still all current uniqueness results for 3-d inverse scattering problems in the case when the
δ−function is the source function are valid only if the data are over-determined ones, see,
e.g. [60, 61] for the frequency domain and §1 of chapter 7 of [56] for an inverse scattering
problem in the time domain.

Suppose now that the function δ (x− x0) in (110) is replaced with such a function p (x)
that p (x) 6= 0 in Ω. And consider the inverse problem of the reconstruction of the potential
q (x) from values of the function u (x, k) for all x ∈ S, k ∈ R. Then uniqueness theorem for
this problem can be proved for the non-overdetermined case. This proof can be handled by
the method, which was introduced in the originating paper [37]. Also, see, e.g. [13] about
this method. This technique is based on Carleman estimates.

Consider the function χ (x) ∈ C∞ (R3) such that χ (x) = 1 in G1 and χ (x) = 0 for x /∈ G.
Let x0 ∈ S. For a number σ > 0 consider the function δσ (x− x0) ,

δσ (x− x0) = C
χ (x)

(2
√
πσ)

3 exp

(
−|x− x0|2

4σ

)
,

where the number C > 0 is such that
∫

G

δσ (x− x0) dx = 1.

The function δσ (x− x0) approximates the function δ (x− x0) in the distribution sense for
sufficiently small values of σ. The function δσ (x− x0) is acceptable in Physics as a proper
replacement of δ (x− x0), since there is no “true” delta-function in the reality. On the other
hand, the above mentioned method of [37] is applicable to the case when δ (x− x0) is replaced
with δσ (x). The function δσ (x− x0) is acceptable in Physics as a proper replacement of
δ (x− x0), since there is no “true” delta-function in the reality. On the other hand, the
above mentioned method of [37] is applicable to the case when δ (x− x0) is replaced with
δσ (x). Therefore, it seems to be worthy from the Physics standpoint to consider Inverse
Problems 3,4 below.

Let in (108) m = 4. To apply results, which follow from the method of [37], consider the
function g (x) such that

g ∈ C4
(
R3
)
, g (x) = 0 in R3�G, (119)
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g (x) 6= 0 in G1. (120)

Consider the following problem

∆w + k2w − q (x)w = −g (x) , x ∈ R3, (121)

3∑

j=1

xj
|x|∂xj

w (x, k)− ikw (x, k) = o (1) , |x| → ∞., |x| → ∞. (122)

The same results of [45, 67, 68] as ones cited above in this section guarantee that for each
k ∈ R there exists unique solution v (x, k) ∈ C5+α (R3) , ∀α ∈ (0, 1) of the problem (121),
(122).

Phaseless Inverse Problem 3 (PIP3). Let m = 4 in (108). Suppose that the function
q (x) satisfying conditions (108), (109) is unknown for x ∈ Ω and known for x ∈ R3�Ω.
Assume that the following function f3 (x, k) is known

f3 (x, k) = |w (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) . (123)

Determine the function q (x) for x ∈ Ω.
Theorem 9.3. Consider PIP3. Let the function g (x) satisfies conditions (119), (120).

Consider two functions q1 (x) , q2 (x) satisfying conditions (108), (109) and such that q1 (x) =
q2 (x) = q (x) for x ∈ R3�Ω. For j = 1, 2 let wj (x, k) ∈ C5+α (R3) be the solution of the
problem (121)-(122) with q (x) = qj (x). Assume that

|w1 (x, k)| = |w2 (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) . (124)

Then q1 (x) ≡ q2 (x) .
We now pose an analog of PIP2. Let w0 (x, k) be the solution of the problem (121)-(122)

for the case q (x) ≡ 0,

w0 (x, k) =

∫

G

exp (ik |x− ξ|)
4π |x− ξ| g (ξ) dξ.

Hence, one can interpret the function w0 (x, k) as the solution of the problem (121)-(122) for
case of the background medium.

Phaseless Inverse Problem 4 (PIP4). Let m = 4 in (108). Suppose that the
function q (x) satisfying (108), (109) is unknown for x ∈ Ω and known for x ∈ R3�Ω. Let
ws (x, k) = w (x, k)− w0 (x, k) . Assume that the following function f4 (x, k) is known

f4 (x, k) = |ws (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) .

Determine the function q (x) for x ∈ Ω.
Theorem 9.4. Consider PIP4. Let all conditions of Theorem 9.3 hold, except that (124)

is replaced with
|ws,1 (x, k)| = |ws,2 (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) , (125)

where ws,j (x, k) = wj (x, k) − w0 (x, k) , j = 1, 2. Assume that q (x) 6= 0, ∀x ∈ S. Then
q1 (x) ≡ q2 (x) .
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9.2 Uniqueness of some phaseless coefficient inverse problems for
the acoustic equation in 3D

We now formulate uniqueness theorems of the paper [10] for some phaseless inverse problems
for the 3D acoustics equation. The main difficulty of proofs of these theorems is the same as
the one indicated in section 5.3.2 for the case of the Schrödinger equation. We keep notations
of the previous section for domains and surfaces.

Let c (x) be the variable sound speed satisfying the following conditions

c ∈ C5
(
R3
)
, c (x) = 1 for x ∈ R3�G, (126)

c (x) ≥ c0 = const. > 0, ∀x ∈ G. (127)

In addition, we assume that there exists a point x0 ∈ Ω such that

(
x− x0,∇c−2 (x)

)
≥ 0, ∀x ∈ G. (128)

Condition (128) can be interpreted as the monotonicity condition of the function c−2 (x)
along rays of straight lines passing through the point {x0} , and {x0} is the beginning of
any such ray. We use (128) quite essentially. First, we use it in Lemma 1. This lemma is
applied, in turn to establish the exponential decay with respect to the time t of the solution
of the Cauchy problem for the acoustic equation in the time domain using results of the
book [68]. Second, (128) guarantees the existence of the Carleman estimate for the operator
∂2t − c2 (x)∆, see Theorem 2.6 in [13]. This Carleman estimate, in turn allows us to apply
Theorem 3.1 of [13] in the final step of the proof of Theorems 9.5 and 9.6 below.

Lemma. Assume that conditions (126)-(128) are in place. Then the family of geodesic
lines generated by the function c (x) satisfies the non-trapping property in R3.

Consider the function g (x) satisfying the following conditions

g ∈ C7
(
R3
)
, g (x) = 0 in R3�G, (129)

g (x) 6= 0, x ∈ S. (130)

∆g (x) 6= 0, ∀x ∈ G1. (131)

Let the number k ∈ R. Consider the following problem

∆u+
k2

c2 (x)
u = −g (x) , x ∈ R3, (132)

3∑

j=1

xj
|x|∂xj

u (x, k)− iku (x, k) = o (1) , |x| → ∞. (133)

Equation (132) is the acoustic equation in the frequency domain. Just as in the previous
section 5.3.2, we now refer to Theorem 6 of Chapter 9 of the book [68], Theorem 3.3 of the
paper [67] as well as to Theorem 6.17 of the book [45]. Combining these results with Lemma,
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we obtain that for each k ∈ R there exists unique solution u (x, k) ∈ C6+α (R3) , ∀α ∈ (0, 1)
of the problem (132), (133).

Phaseless Inverse Problem 5 (PIP5). Suppose that the function c (x) satisfying
conditions (126)-(128) is unknown for x ∈ Ω and known for x ∈ R3�Ω. Assume that the
following function f5 (x, k) is known

f5 (x, k) = |u (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) . (134)

Determine the function c (x) for x ∈ Ω.
Theorem 9.5. Consider PIP5. Let the function g (x) satisfies conditions (129)-(131).

Consider two functions c1 (x) , c2 (x) satisfying conditions (126)-(128) and such that c1 (x) =
c2 (x) = c (x) for x ∈ R3�Ω. For j = 1, 2 let uj (x, k) ∈ C6+α (R3) , ∀α ∈ (0, 1) be the
solution of the problem (132), (133) with c (x) = cj (x). Assume that

|u1 (x, k)| = |u2 (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) . (135)

Then c1 (x) ≡ c2 (x) .
IP1 is about the case when the modulus of the total wave field is measured for x ∈ S, k ∈

(a, b). Consider the function u0 (x, k) ,

u0 (x, k) =

∫

G

exp (ik |x− ξ|)
4π |x− ξ| g (ξ) dξ.

This function is the solution of the problem (132), (133) for the case c (x) ≡ 1. Since c (x) = 1
for x ∈ R3�G, then one can consider u0 (x, k) as the solution of the problem (132), (133) for
the background medium. Hence, the function us (x, k) = u (x, k)−u0 (x, k) can be considered
as the wave, which is scattered due to the inhomogeneous structure of the coefficient c (x)
for x ∈ G. This is our motivation for posing Phaseless Inverse Problem 6.

Phaseless Inverse Problem 6 (PIP6). Suppose that the function c (x) satisfying
conditions (126)-(128) is unknown for x ∈ Ω and known for x ∈ R3�Ω. Let us (x, k) =
u (x, k)− u0 (x, k) . Assume that the following function f6 (x, k) is known

f6 (x, k) = |us (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) .

Determine the function c (x) for x ∈ Ω.
Theorem 9.6. Consider PIP6. Assume that

c2 (x) 6= 1, ∀x ∈ S.

Let all conditions of Theorem 5.5 hold, except that (130) is not imposed. In addition, let
(135) be replaced with

|us,1 (x, k)| = |us,2 (x, k)| , ∀x ∈ S, ∀k ∈ (a, b) ,

where us,j (x, k) = uj (x, k)− u0 (x, k) , j = 1, 2. Then c1 (x) ≡ c2 (x) .
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10 Presentations

Below is the list of our presentations of above results during the reportage period.
A. Presentations to engineers of the Army Research Laboratory (ARL):

1. Presentation at the Army Research Laboratory (ARL) to Mr. Brian Burns, an engineer
of ARL, Dr. Joseph D. Myers, Program Manager of Numerical Analysis Program of
ARO and to Drs. Anders Sullivan and Lam Nguyen, engineers of RF Signal Processing
and Modeling Branch of Sensors and Electron Devices Directorate of ARL and to
(2012).

2. Presentation to Mr. Brian Burns and to Dr. Joseph D. Myers during their visit of our
campus (2012).

3. Presentation to Drs. Joseph D. Myers and Anders Sullivan during their visit of our
campus (2012).

4. Presentation over the phone to Mr. Brian Burns and Drs. Joseph D. Myers and Anders
Sullivan (2013).

B. Other presentations:

1. Colloquium talk at Department of Mathematical Sciences of University of Delaware.

2. Colloquium talk at Department of Mathematics of University of Virginia.

3. Colloquium talk at Department of Mathematics of Georgia Institute of Technology.

4. Colloquium talk at Department of Mathematics of Wichita State University (Wichita,
Kansas).

5. Inverse Problems workshop in Ecole Polytechnique, Paris.

6. Plenary speaker at the conference: “Inverse Problems Problems: Modelling and Sim-
ulation”, Turkey.

7. Plenary speaker at the conference on Inverse Problems, Albi, France.

8. Conference “Applied Inverse Problems”, Korea, organizer of a minisimposium and
presenter of a talk.

9. Presentation at the Conference dedicated to the 30st anniversary of the journal “Inverse
Problems”, Bristol, UK.

10. Presentation at the 6th International Conference on Advanced Computational Methods
in Engineering, Gent, Belgium.

11. Plenary speaker at International Conference on Inverse Problems and Optimal Control,
Hong Kong.
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11 Book and Survey Papers

The book [1] is published by Springer, the World most prestigious publisher of the scientific
literature. Results of Beilina and Klibanov since their first joint publication [25] in 2008 and
up to 2012 are summarized there. The book discusses both the theory and numerical studies
of the globally convergent numerical method of section 3 and of the adaptivity of section 4.
Although this book was published only two years ago, it was cited more than 97 times by
now, see

http://scholar.google.com/citations?user=pFmp7LMAAAAJ&hl=en.
The paper [7] is the survey of the relaxation property for the adaptivity technique (section

4) . The paper [13] is the survey on the applications of Carleman estimates to inverse
problems, starting from the work [37] in 1981. It is worthy to point out that both globally
convergent numerical methods for CIPs, presented above, have roots in the idea of [37].
Currently there are more than 50 publications of authors, other than the ones of [37], which
cite this paper. In accordance with

http://scholar.google.com/citations?user=pFmp7LMAAAAJ&hl=en,
the paper [37] was cited more than 314 times.

12 Publications

Publications [1]-[23] acknowledge the support of this grant. The paper [27] is a featured
article of Inverse Problems.
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